Skip to main content
Log in

Eliminating amplitude death by the asymmetry coupling and process delay in coupled oscillators

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Coupling mode plays a key role in determining the dynamical behavior and realizing certain system’s rhythm and function in the complex systems. In this work, the effects of the asymmetry and process delay in the coupling on the dynamical behavior are investigated. We find that both the asymmetry and process delay effectively reduce the region of the frequency-mismatch-induced amplitude death in the parameter space, and make the system to recover oscillation in the amplitude death regime so as to retain sustained system’s rhythm function. Furthermore, we show the asymmetry and process delay can destroy synchronization. Our results suggest that the asymmetry coupling and process delay are of crucial importance in controlling amplitude death and synchronization, and hence that their considerations are vital for modeling real life problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.T. Winfree, The Geometry of Biological Time (Springer, New York, 1980)

  2. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)

  3. J.D. Murray, Mathematical biology, 3rd edn. (Springer, Berlin, 2003)

  4. D.V. Ramana Reddy, A. Sen, G.L. Johnston, Phys. Rev. Lett. 85, 3381 (2000)

    Article  ADS  Google Scholar 

  5. A. Takamatsu, T. Fujii, I. Endo, Phys. Rev. Lett. 85, 2026 (2000)

    Article  ADS  Google Scholar 

  6. R. Herrero, M. Figueras, J. Rius, F. Pi, G. Orriols, Phys. Rev. Lett. 84, 5312 (2000)

    Article  ADS  Google Scholar 

  7. A. Prasad, Y.C. Lai, A. Gavrielides, V. Kovanis, Phys. Lett. A 318, 71 (2003)

    Article  ADS  Google Scholar 

  8. E. Ullner, A. Zaikin, E.I. Volkov, J. Garca-Ojalvo, Phys. Rev. Lett. 99, 148103 (2007)

    Article  ADS  Google Scholar 

  9. A. Koseska, E. Volkov, J. Kurths, Europhys. Lett. 85, 28002 (2009)

    Article  ADS  Google Scholar 

  10. M.F. Crowley, I.R. Epstein, J. Phys. Chem. 93, 2496 (1989)

    Article  Google Scholar 

  11. J. Benford, H. Sze, W. Woo, R.R. Smith, B. Harteneck, Phys. Rev. Lett. 62, 969 (1989)

    Article  ADS  Google Scholar 

  12. R.E. Mirollo, S.H. Stogatz, J. Stat. Phys. 60, 245 (1990)

    Article  ADS  Google Scholar 

  13. D.G. Aronson, G.B. Ermentrout, N. Kopell, Physica D 41, 403 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  14. C.G. Yao, W. Zou, Q. Zhao, Chaos 22, 023149 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. C.G. Yao, Q. Zhao, W.Q. Liu, J. Yu, Nonlinear Dyn. 75, 17 (2014)

    Article  MathSciNet  Google Scholar 

  16. A. Prasad, Phys. Rev. E 72, 056204 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. W. Zou, M. Zhan, Phys. Rev. E 80, 065204(R) (2009)

    Article  ADS  Google Scholar 

  18. W. Zou, C.G. Yao, M. Zhan, Phys. Rev. E 82, 056203 (2010)

    Article  ADS  Google Scholar 

  19. F.M. Atay, J. Differ. Equations 221, 190 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. W. Michiels, H. Nijmeijer, Chaos 19, 033110 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. K. Konishi, H. Kokame, N. Hara, Phys. Rev. E 81, 016201 (2010)

    Article  ADS  Google Scholar 

  22. W. Zou, Y. Tang, L.X. Li, J. Kurths, Phys. Rev. E 85, 046206 (2014)

    Article  ADS  Google Scholar 

  23. W. Zou, D.V. Senthilkumar, R. Nagao, I.Z. Kiss, Y. Tang, A. Koseska, J. Duan, J. Kurths, Nat. Commun. 6, 7709 (2015)

    Article  ADS  Google Scholar 

  24. K. Konishi, Phys. Rev. E 68, 067202 (2003)

    Article  ADS  Google Scholar 

  25. K. Konishi, Int. J. Bifurc. Chaos 17, 2781 (2007)

    Article  MathSciNet  Google Scholar 

  26. R. Karnatak, R. Ramaswamy, A. Prasad, Phys. Rev. E 76, 035201(R) (2007)

    Article  ADS  Google Scholar 

  27. W. Zou, X.G. Wang, Q. Zhao, M. Zhan, Fron. Phys. China 4, 97 (2009)

    Article  ADS  Google Scholar 

  28. M. Dasgupta, M. Rivera, P. Parmananda, Chaos 20, 023126 (2010)

    Article  ADS  Google Scholar 

  29. M.Y. Kim, R. Roy, J.L. Aron, T.W. Carr, I.B. Schwartz, Phys. Rev. Lett. 94, 088101 (2005)

    Article  ADS  Google Scholar 

  30. L. Illing, G. Hoth, L. Shareshian, C. May, Phys. Rev. E 83, 026107 (2011)

    Article  ADS  Google Scholar 

  31. S.Y. Kim, W. Lim, Phys. Rev. E 64, 016211 (2001)

    Article  ADS  Google Scholar 

  32. B. Blasius, Phys. Rev. E 72, 066216 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  33. J. Bragard, G. Vidal, H. Mancini, C. Mendoza, S. Boccaletti, Chaos 17, 043107 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. W. Zou, D.V. Senthilkumar, M. Zhan, Phys. Rev. Lett. 111, 014101 (2013)

    Article  ADS  Google Scholar 

  35. C. Masoller, A.C. Marti, Phys. Rev. Lett. 94, 134102 (2005)

    Article  ADS  Google Scholar 

  36. J. Jalife, R.A. Gray, G.E. Morley, J.M. Davidenko, Chaos 8, 79 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenggui Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, C., Zhao, Q. & Zou, W. Eliminating amplitude death by the asymmetry coupling and process delay in coupled oscillators. Eur. Phys. J. B 89, 29 (2016). https://doi.org/10.1140/epjb/e2015-60777-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60777-9

Keywords

Navigation