Skip to main content
Log in

Quantum theory of spin alignment in a circular magnetic nanotube

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

When electron spin and momentum couple in a solid, one generally obtains intriguing and unexpected phenomena. Metallic ferromagnetic nanotubes of cobalt with circular magnetization, which have been prepared by us and others, are a particularly interesting system. Here the spins of the conduction electrons are frustrated. They would like to align parallel to the magnetic field of the magnetization, but as the electrons move quickly around the tube the spins cannot follow the magnetization direction. In a previous short theoretical paper we solved the spin dynamics using a classical model. Here we generalize our work to a quantum mechanical model. The surprising result is that the spin of most conduction electrons is not parallel or anti-parallel to the circumferential magnetization but mostly parallel or anti-parallel to the axis of the nanotube. This result means that such a cobalt nanotube is a different ferromagnet from a cobalt film or bulk cobalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Manginin, D. Ravelosona, J.A. Katine, M.J. Carey, B.D. Terris, E.E. Fullerton, Nat. Mater. 5, 210 (2006)

    Article  ADS  Google Scholar 

  2. A. Neumann, D. Altwein, C. Thoennissen, R. Wieser, A. Berger, A. Meyer, E. Vedmedenko, H.P. Oepen, New J. Phys. 16, 083012 (2014)

    Article  ADS  Google Scholar 

  3. F. Haering, U. Wiedwald, S. Nothelfer, B. Koslowski, P. Ziemann, L. Lechner, A. Wallucks, K. Lebecki, U. Nowak, E. Goering, G. Schutz, Nanotechnology 24, 465709 (2013)

    Article  ADS  Google Scholar 

  4. A. Parge, T. Niermann, M. Seibt, M. Münzenberg, J. Appl. Phys. 101, 104302 (2007)

    Article  ADS  Google Scholar 

  5. S. Khizroev, M.H. Kryder, D. Litvinov, D.A. Thompson, Appl. Phys. Lett. 81, 2256 (2002)

    Article  ADS  Google Scholar 

  6. D.P. Weber, D. Rüffer, A. Buchter, F. Xue, E. Russo-Averchi, R. Huber, P. Berberich, J. Arbiol, A.F. Fontcuberta-Morral, D. Grundler, M. Poggio, Nano Lett. 12, 6139 (2012)

    Article  ADS  Google Scholar 

  7. J. Lee, D. Suess, T. Schrefl, K.H. Oh, J. Fidler, J. Magn. Magn. Mater. 310, 2445 (2007)

    Article  ADS  Google Scholar 

  8. K. Niemirowicz, K.H. Markiewicz, A.Z. Wilczewska, H. Car, Adv. Med. Science 57, 196 (2012)

    Article  Google Scholar 

  9. S.J. Son, J. Reichel, B. He, M. Schuchman, S.B. Lee, J. Am. Chem. Soc. 127, 7316 (2005)

    Article  Google Scholar 

  10. K.Ž. Rozmana, D. Peckoa, S. Sturma, U. Maverb, P. Nadrahb, M. Beleb, S. Kobea, Mater. Chem. Phys. 133, 218 (2012)

    Article  Google Scholar 

  11. H. Hillebrenner, F. Buyukserin, J.D. Stewart, C.R. Martin, Nanomedicine 1, 39 (2006)

    Article  Google Scholar 

  12. J. Xie, L. Chen, V.K. Varadan, S. Chetan, M. Srivatsan, J. Nanotechnol. Eng. Med. 2, 031009 (2012)

    Article  Google Scholar 

  13. P. Landeros, O.J. Suarez, A. Cuchillo, P. Vargas, Phys. Rev. B 79, 024404 (2009)

    Article  ADS  Google Scholar 

  14. D. Li, R.S. Thompson, G. Bergmann, J.G. Lu, Adv. Mater. 20, 4575 (2008)

    Article  Google Scholar 

  15. K. Nielsch, F.J. Castaño, C.A. Ross, R. Krishnan, J. Appl. Phys. 98, 034318 (2005)

    Article  ADS  Google Scholar 

  16. K.Z. Rozman, D. Pecko, L. Suhodolcan, P.J. McGuiness, S. Kobe, J. Alloys Compd. 509, 551 (2011)

    Article  Google Scholar 

  17. N.A. Usov, O.N. Serebryakova, J. Appl. Phys. 116, 133902 (2014)

    Article  ADS  Google Scholar 

  18. G. Bergmann, R.S. Thompson, J.G. Lu, Phys. Lett. A 379, 2083 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  19. L.H. Thomas, Nature 117, 514 (1926)

    Article  ADS  Google Scholar 

  20. J.R. Taylor, in Classical Mechanics (University Science Books, 2005), p. 339

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerd Bergmann or Richard S. Thompson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergmann, G., Thompson, R. & Lu, J. Quantum theory of spin alignment in a circular magnetic nanotube. Eur. Phys. J. B 88, 318 (2015). https://doi.org/10.1140/epjb/e2015-60560-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60560-0

Keywords

Navigation