Skip to main content
Log in

Temperature dependence of thermal conductivities of coupled rotator lattice and the momentum diffusion in standard map

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In contrary to other 1D momentum-conserving lattices such as the Fermi-Pasta-Ulam β (FPU-β) lattice, the 1D coupled rotator lattice is a notable exception which conserves total momentum while exhibits normal heat conduction behavior. The temperature behavior of the thermal conductivities of 1D coupled rotator lattice had been studied in previous works trying to reveal the underlying physical mechanism for normal heat conduction. However, two different temperature behaviors of thermal conductivities have been claimed for the same coupled rotator lattice. These different temperature behaviors also intrigue the debate whether there is a phase transition of thermal conductivities as the function of temperature. In this work, we will revisit the temperature dependent thermal conductivities for the 1D coupled rotator lattice. We find that the temperature dependence follows a power law behavior which is different with the previously found temperature behaviors. Our results also support the claim that there is no phase transition for 1D coupled rotator lattice. We also give some discussion about the similarity of diffusion behaviors between the 1D coupled rotator lattice and the single kicked rotator also called the Chirikov standard map. It is found that the momentum diffusion constant for 1D coupled rotator lattice follows a power-law temperature dependence of T −3.2 which is close to that of Chirikov standard map which follows a behavior of T −3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Lepri, R. Livi, A. Politi, Phys. Rev. Lett. 78, 1896 (1997)

    Article  ADS  Google Scholar 

  2. S. Lepri, R. Livi, A. Politi, Phys. Rep. 377, 1 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Dhar, Adv. Phys. 57, 457 (2008)

    Article  ADS  Google Scholar 

  4. S. Liu, X. Xu, R. Xie, G. Zhang, B. Li, Eur. Phys. J. B 85, 337 (2013)

    Article  ADS  Google Scholar 

  5. B. Hu, B. Li, H. Zhao, Phys. Rev. E 57, 2992 (1998)

    Article  ADS  Google Scholar 

  6. P. Tong, B. Li, B. Hu, Phys. Rev. B 59, 8639 (1999)

    Article  ADS  Google Scholar 

  7. T. Hatano, Phys. Rev. E 59, R1 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  8. G.P. Tsironis, A.R. Bishop, A.V. Savin, A.V. Zolotaryuk, Phys. Rev. E 60, 6610 (1999)

    Article  ADS  Google Scholar 

  9. A. Sarmiento, R. Reigada, A.H. Romero, K. Lindenberg, Phys. Rev. E 60, 5317 (1999)

    Article  ADS  Google Scholar 

  10. A. Dhar, D. Dhar, Phys. Rev. Lett. 82, 480 (1999)

    Article  ADS  Google Scholar 

  11. D. Alonso, R. Artuso, G. Casati, I. Guarneri, Phys. Rev. Lett. 82, 1859 (1999)

    Article  ADS  Google Scholar 

  12. B. Hu, B. Li, H. Zhao, Phys. Rev. E 61, 3828 (2000)

    Article  ADS  Google Scholar 

  13. K. Aoki, D. Kusnezov, Phys. Lett. A 265, 250 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  14. B. Li, H. Zhao, B. Hu, Phys. Rev. Lett. 86, 63 (2001)

    Article  ADS  Google Scholar 

  15. A. Dhar, Phys. Rev. Lett. 86, 5882 (2001)

    Article  ADS  Google Scholar 

  16. K. Aoki, D. Kusnezov, Phys. Rev. Lett. 86, 4029 (2001)

    Article  ADS  Google Scholar 

  17. Y. Zhang, H. Zhao, Phys. Rev. E 66, 026106 (2002)

    Article  ADS  Google Scholar 

  18. B. Li, L. Wang, B. Hu, Phys. Rev. Lett. 88, 223901 (2002)

    Article  ADS  Google Scholar 

  19. K. Saito, Europhys. Lett. 61, 34 (2003)

    Article  ADS  Google Scholar 

  20. A.V. Savin, O.V. Gendelman, Phys. Rev. E 67, 041205 (2003)

    Article  ADS  Google Scholar 

  21. S. Lepri, R. Livi, A. Politi, Phys. Rev. E 68, 067102 (2003)

    Article  ADS  Google Scholar 

  22. D. Segal, A. Nitzan, P. Hänggi, J. Chem. Phys. 119, 6840 (2003)

    Article  ADS  Google Scholar 

  23. O.V. Gendelman, A.V. Savin, Phys. Rev. Lett. 92, 074301 (2004)

    Article  ADS  Google Scholar 

  24. B. Li, J. Wang, L. Wang, G. Zhang, Chaos 15, 015121 (2005)

    Article  ADS  Google Scholar 

  25. G. Zhang, B. Li, J. Chem. Phys. 123, 114714 (2005)

    Article  ADS  Google Scholar 

  26. H. Zhao, Z. Wen, Y. Zhang, D. Zheng, Phys. Rev. Lett. 94, 025507 (2005)

    Article  ADS  Google Scholar 

  27. H. Zhao, Phys. Rev. Lett. 96, 140602 (2006)

    Article  ADS  Google Scholar 

  28. D. He, S. Buyukdagli, B. Hu, Phys. Rev. E 78, 061103 (2008)

    Article  ADS  Google Scholar 

  29. Z.-G. Shao, L. Yang, W.-R. Zhong, D.-H. He, B. Hu, Phys. Rev. E 78, 061130 (2008)

    Article  ADS  Google Scholar 

  30. Y. Dubi, M. Di Ventra, Phys. Rev. E 79, 042101 (2009)

    Article  ADS  Google Scholar 

  31. A. Henry, G. Chen, Phys. Rev. B 79, 144305 (2009)

    Article  ADS  Google Scholar 

  32. K. Saito, A. Dhar, Phys. Rev. Lett. 104, 040601 (2010)

    Article  ADS  Google Scholar 

  33. L. Wang, D. He, B. Hu, Phys. Rev. Lett. 105, 160601 (2010)

    Article  ADS  Google Scholar 

  34. N. Yang, G. Zhang, B. Li, Nano Today 5, 85 (2010)

    Article  Google Scholar 

  35. L. Wang, T. Wang, Europhys. Lett. 93, 54002 (2011)

    Article  ADS  Google Scholar 

  36. L. Wang, B. Hu, B. Li, Phys. Rev. E 86, 040101 (2012)

    Article  ADS  Google Scholar 

  37. D. Xiong, J. Wang, Y. Zhang, H. Zhao, Phys. Rev. E 85, 020102(R) (2012)

    Article  ADS  Google Scholar 

  38. G.T. Landi, M.J. de Oliveira, Phys. Rev. E 87, 052126 (2013)

    Article  ADS  Google Scholar 

  39. D. Xiong, Y. Zhang, H. Zhao, Phys. Rev. E 90, 022117 (2014)

    Article  ADS  Google Scholar 

  40. S.G. Das, A. Dhar, K. Saito, C.B. Mendl, H. Spohn, Phys. Rev. E 90, 012124 (2014)

    Article  ADS  Google Scholar 

  41. C.B. Mendl, H. Spohn, Phys. Rev. E 90, 012147 (2014)

    Article  ADS  Google Scholar 

  42. A.V. Savin, Y.A. Kosevich, Phys. Rev. E 89, 032102 (2014)

    Article  ADS  Google Scholar 

  43. S. Liu, J. Liu, P. Hänggi, C. Wu, B. Li, Phys. Rev. B 90, 174304 (2014)

    Article  ADS  Google Scholar 

  44. L. Wang, L. Xu, H. Zhao, Phys. Rev. E 91, 012110 (2015)

    Article  ADS  Google Scholar 

  45. S. Lepri, R. Livi, A. Politi, Europhys. Lett. 43, 271 (1998)

    Article  ADS  Google Scholar 

  46. S. Lepri, Phys. Rev. E 58, 7165 (1998)

    Article  ADS  Google Scholar 

  47. O. Narayan, S. Ramaswamy, Phys. Rev. Lett. 89, 200601 (2002)

    Article  ADS  Google Scholar 

  48. J.-S. Wang, B. Li, Phys. Rev. Lett. 92, 074302 (2004)

    Article  ADS  Google Scholar 

  49. P. Cipriani, S. Denisov, A. Politi, Phys. Rev. Lett. 94, 244301 (2005)

    Article  ADS  Google Scholar 

  50. E. Pereira, R. Falcao, Phys. Rev. Lett. 96, 100601 (2006)

    Article  ADS  Google Scholar 

  51. L. Delfini, S. Lepri, R. Livi, A. Politi, Phys. Rev. E 73, 060201 (2006)

    Article  ADS  Google Scholar 

  52. G. Basile, C. Bernardin, S. Olla, Phys. Rev. Lett. 96, 204303 (2006)

    Article  ADS  Google Scholar 

  53. H. van Beijeren, Phys. Rev. Lett. 108, 180601 (2012)

    Article  Google Scholar 

  54. C.B. Mendl, H. Spohn, Phys. Rev. Lett. 111, 230601 (2013)

    Article  ADS  Google Scholar 

  55. E. Pereira, R. Falcao, H.C.F. Lemos, Phys. Rev. E 87, 032158, (2013)

    Article  ADS  Google Scholar 

  56. H. Spohn, J. Stat. Phys. 154, 1191 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  57. S. Liu, P. Hänggi, N. Li, J. Ren, B. Li, Phys. Rev. Lett. 112, 040601 (2014)

    Article  ADS  Google Scholar 

  58. C.W. Chang, D. Okawa, H. Garcia, A. Majumdar, A. Zettl, Phys. Rev. Lett. 101, 075903 (2008)

    Article  ADS  Google Scholar 

  59. X. Xu, L.F.C. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C.T. Bui, R. Xie, J.T.L. Thong, B.H. Hong, K.P. Loh, D. Donadio, B. Li, B. Ozyilmaz, Nat. Commun. 5, 3689 (2014)

    ADS  Google Scholar 

  60. T. Meier, F. Menges, P. Nirmalraj, H. Hölscher, H. Riel, B. Gotsmann, Phys. Rev. Lett. 113, 060801 (2014)

    Article  ADS  Google Scholar 

  61. C. Giardina, R. Livi, A. Politi, M. Vassalli, Phys. Rev. Lett. 84, 2144 (2000)

    Article  ADS  Google Scholar 

  62. O.V. Gendelman, A.V. Savin, Phys. Rev. Lett. 84, 2381 (2000)

    Article  ADS  Google Scholar 

  63. L. Yang, B. Hu, Phys. Rev. Lett. 94, 219404 (2005)

    Article  ADS  Google Scholar 

  64. L. Yang, P. Grassberger, arXiv:cond-mat/0306173 (2003)

  65. Y. Li, S. Liu, N. Li, P. Hänggi, B. Li, New J. Phys. 17, 043064 (2015)

    Article  ADS  Google Scholar 

  66. S.G. Das, A. Dhar, arXiv:1411.5247v2 (2015)

  67. H. Spohn, arXiv:1411.3907 (2014)

  68. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012)

    Article  ADS  Google Scholar 

  69. J. Laskar, P. Robutel, Celest. Mech. Dyn. Astron. 80, 39 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  70. Ch. Skokos, D.O. Krimer, S. Komineas, S. Flach, Phys. Rev. E 79, 056211 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  71. N. Li, P. Tong, B. Li, Europhys. Lett. 75, 49 (2006)

    Article  ADS  Google Scholar 

  72. N. Li, B. Li, Europhys. Lett. 78, 34001 (2007)

    Article  ADS  Google Scholar 

  73. N. Li, B. Li, Phys. Rev. E 76, 011108 (2007)

    Article  ADS  Google Scholar 

  74. N. Li, B. Li, J. Phys. Soc. Jpn 78, 044001 (2009)

    Article  ADS  Google Scholar 

  75. N. Li, B. Li, S. Flach, Phys. Rev. Lett. 105, 054102 (2010)

    Article  ADS  Google Scholar 

  76. N. Li, B. Li, AIP Adv. 2, 041408 (2012)

    Article  ADS  Google Scholar 

  77. N. Li, B. Li, Phys. Rev. E 87, 042125 (2013)

    Article  ADS  Google Scholar 

  78. L. Yang, N. Li, B. Li, Phys. Rev. E 90, 062122 (2014)

    Article  ADS  Google Scholar 

  79. B.V. Chirikov, Phys. Rep. 52, 263 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  80. R.S. MacKay, J.D. Meiss, I.C. Percival, Physica D 13, 55 (1984)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nianbei Li or Baowen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, N. & Li, B. Temperature dependence of thermal conductivities of coupled rotator lattice and the momentum diffusion in standard map. Eur. Phys. J. B 88, 182 (2015). https://doi.org/10.1140/epjb/e2015-60361-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60361-5

Keywords

Navigation