Skip to main content
Log in

Quantifying two-dimensional nonstationary signal with power-law correlations by detrended fluctuation analysis

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we develop a new method for the multifractal characterization of two-dimensional nonstationary signal, which is based on the detrended fluctuation analysis (DFA). By applying to two artificially generated signals of two-component ARFIMA process and binomial multifractal model, we show that the new method can reliably determine the multifractal scaling behavior of two-dimensional signal. We also illustrate the applications of this method in finance and physiology. The analyzing results exhibit that the two-dimensional signals under investigation are power-law correlations, and the electricity market consists of electricity price and trading volume is multifractal, while the two-dimensional EEG signal in sleep recorded for a single patient is weak multifractal. The new method based on the detrended fluctuation analysis may add diagnostic power to existing statistical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Di Matteo, Quant. Finance 7, 21 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. H.E. Stanley, L.A.N. Amaral, A.L. Goldberger, S. Havlin, P.C. Ivanov, C.K. Peng, Physica A 270, 309 (1999)

    Article  ADS  Google Scholar 

  3. J. Kwapien, S. Drozdz, Phys. Rep. 515, 115 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  4. Zh. Chen, K. Hu, H.E. Stanley, V. Novak, Ch.I. Plamen, Phys. Rev. E 73, 031915 (2006)

    Article  ADS  Google Scholar 

  5. R.T. Vassoler, G.F. Zebendea, Physica A 391, 2438 (2012)

    Article  ADS  Google Scholar 

  6. C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Phys. Rev. E 49, 1685 (1994)

    Article  ADS  Google Scholar 

  7. C.K. Peng et al., Nature 356, 168 (1992)

    Article  ADS  Google Scholar 

  8. J.M. Lee, D.J. Kim, I.Y. Kim, K.S. Park, S.I. Kim, Med. Eng. Phys. 26, 773 (2004)

    Article  Google Scholar 

  9. P. Grau-Carles, Physica A 299, 521 (2001)

    Article  ADS  MATH  Google Scholar 

  10. P.J. Shang, Y.B. Lu, S. Kamae, Chaos Solitons Fractals 36, 82 (2008)

    Article  ADS  Google Scholar 

  11. J.W. Kantelhardt, S.A. Zschiegner, E.K. Bunde, S. Havlin, A. Bunde, H.E. Stanley, Physica A 316, 87 (2002)

    Article  ADS  MATH  Google Scholar 

  12. B. Podobnik, H.E. Stanley, Phys. Rev. Lett. 100, 084102 (2008)

    Article  ADS  Google Scholar 

  13. W.X. Zhou, Phys. Rev. E 77, 066211 (2008)

    Article  ADS  Google Scholar 

  14. G.F. Gu, W.X. Zhou, Phys. Rev. E 74, 061104 (2006)

    Article  ADS  Google Scholar 

  15. R.G. Yeh, C.W. Lin, M. Abbod, J.S. Shieh, Comput. Math. Methods Med. 2012, 947191 (2012)

    MathSciNet  Google Scholar 

  16. J. Feder, Fractals (Plenum Press, New York, 1988)

  17. H.O. Peitgen, H. Jurgens, D. Saupe, Chaos and Fractals (Springer-Verlag, New York, 1992)

  18. C.W.J. Granger, R. Joyeux, Journal of Time Series Analysis 1, 15 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Hosking, Biometrika 68, 165 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Podobnik, P.Ch. Ivanov, V. Jazbinsek, Z. Trontelj, H.E. Stanley, I. Grosse, Phys. Rev. E 71, 025104 (2005)

    Article  ADS  Google Scholar 

  21. B. Podobnik, I. Grosse, D. Horvati’c, S. Ilic, P.Ch. Ivanov, H.E. Stanley, Eur. Phys. J. B 71, 243 (2009)

    Article  ADS  Google Scholar 

  22. N.E. Huang et al., Proc. R. Soc. London A 454, 903 (1998)

    Article  ADS  MATH  Google Scholar 

  23. J. Wang, P.J. Shang, J.A. Xia, W.B. Shi, Physica A 421, 583 (2015)

    Article  Google Scholar 

  24. B.K. Lind et al., Sleep Breath 7, 13 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingju Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Q., Wu, Y. Quantifying two-dimensional nonstationary signal with power-law correlations by detrended fluctuation analysis. Eur. Phys. J. B 88, 199 (2015). https://doi.org/10.1140/epjb/e2015-60332-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60332-x

Keywords

Navigation