Skip to main content
Log in

Superfluid density in the slave-boson theory

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Despite of the success of the slave-boson theory in capturing qualitative physics of high-temperature superconductors like cuprates, it fails to reproduce the correct temperature-dependent behavior of superfluid density, let alone the independence of the linear temperature term on doping in the underdoped regimes of hole-doped cuprate, a common experimental observation in different cuprates. It remains puzzling up to now in spite of intensive theoretical efforts. For electron-doped case, even qualitative treatment is not reported at present time. Here we revisit these problems and provide an alternative superfluid density formulation by using the London relation instead of employing the paramagnetic current-current correlation function. The obtained formula, on the one hand, provides the correct temperature-dependent behavior of the superfluid density in the whole temperature regime, on the other hand, makes the doping dependence of the linear temperature term substantially weaken and a possible interpretation for its independence on doping is proposed. As an application, electron-doped cuprate is studied, whose result qualitatively agrees with existing experiments and successfully explains the origin of d- to anisotropic s-wave transition across the optimal doping. Our result remedies some failures of the slave-boson theory as employed to calculate superfluid density in cuprates and may be useful in the understanding of the related physics in other strongly correlated systems, e.g. Na x CoO2·yH2O and certain iron-based superconductors with dominating local magnetic exchange interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sachdev, Quantum Phase Transition, 2nd edn. (Cambridge University Press, Cambridge, 2011)

  2. X.-G. Wen, Quantum Field Theory of Many-Body Systems (Oxford Graduate Texts, New York, 2004)

  3. B.I. Halperin, P.A. Lee, N. Read, Phys. Rev. B 47, 7312 (1993)

    Article  ADS  Google Scholar 

  4. P. Coleman, Introduction to Many Body Physics (Cambridge University Press, Cambridge, 2015)

  5. T. Senthil, M. Vojta, S. Sachdev, Phys. Rev. B 69, 035111 (2004)

    Article  ADS  Google Scholar 

  6. P.W. Anderson, P.A. Lee, M. Randeria, T.M. Rice, N. Trivedi, F.C. Zhang, J. Phys.: Condens. Matter 16, R755 (2004)

    ADS  Google Scholar 

  7. P.A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  8. T. Timusk, B. Statt, Rep. Prog. Phys. 62, 61 (1999)

    Article  ADS  Google Scholar 

  9. X.-G. Wen, P.A. Lee, Phys. Rev. Lett. 76, 503 (1996)

    Article  ADS  Google Scholar 

  10. P.A. Lee, Phys. Rev. X 4, 031017 (2014)

    Google Scholar 

  11. C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, A.E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989)

    Article  ADS  Google Scholar 

  12. N. Nagaosa, P.A. Lee, Phys. Rev. Lett. 64, 2450 (1990)

    Article  ADS  Google Scholar 

  13. T. Xiang, D-Wave Superconductor (Science Publisher, Beijing, 2007) (in chinese)

  14. B.R. Boyce, J. Skinta, T. Lemberger, Physica C 341-348, 561 (2000)

    Article  ADS  Google Scholar 

  15. J. Stajic, A. Iyengar, K. Levin, B.R. Boyce, T.R. Lemberger, Phys. Rev. B 68, 024520 (2003)

    Article  ADS  Google Scholar 

  16. L.B. Ioffe, A. Millis, J. Phys. Chem. Solids 63, 2259 (2002)

    Article  ADS  Google Scholar 

  17. J. Yong, M.J. Hinton, A. McCray, M. Randeria, M. Naamneh, A. Kanigel, T.R. Lemberger, Phys. Rev. B 85, 180507(R) (2012)

    Article  ADS  Google Scholar 

  18. H.G. Luo, T. Xiang, Phys. Rev. Lett. 94, 027001 (2005)

    Article  ADS  Google Scholar 

  19. T. Das, R.S. Markiewicz, A. Bansil, Phys. Rev. Lett. 98, 197004 (2007)

    Article  ADS  Google Scholar 

  20. T. Xiang, H.G. Luo, D.H. Lu, K.M. Shen, Z.X. Shen, Phys. Rev. B 79, 014524 (2009)

    Article  ADS  Google Scholar 

  21. N.P. Armitage, P. Fournier, R.L. Greene, Rev. Mod. Phys. 82, 2421 (2010)

    Article  ADS  Google Scholar 

  22. Q. Yuan, Y. Chen, T.K. Lee, C.S. Ting, Phys. Rev. B 69, 214523 (2004)

    Article  ADS  Google Scholar 

  23. C.S. Liu, H.-G. Luo, W.C. Wu, T. Xiang, Phys. Rev. B 73, 174517 (2006)

    Article  ADS  Google Scholar 

  24. C.S. Liu, W.C. Wu, Phys. Rev. B 76, 014513 (2007)

    Article  ADS  Google Scholar 

  25. I.F. Herbut, Phys. Rev. Lett. 94, 237001 (2005)

    Article  ADS  Google Scholar 

  26. K. Takada, H. Sakurai, E.T. Muromachi, F. Izumi, R.A. Dilanian, T. Sasaki, Nature 422, 53 (2003)

    Article  ADS  Google Scholar 

  27. Q. Si, E. Abrahams, Phys. Rev. Lett. 101, 076401 (2008)

    Article  ADS  Google Scholar 

  28. F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)

    Article  ADS  Google Scholar 

  29. R.B. Laughlin, Phys. Rev. Lett. 112, 017004 (2014)

    Article  ADS  Google Scholar 

  30. Y.-M. Lu, T. Xiang, D.-H. Lee, Nat. Phys. 10, 634 (2014)

    Article  Google Scholar 

  31. A. Gupta, D. Sa, Solid State Commun. 203, 41 (2015)

    Article  ADS  Google Scholar 

  32. T. Das, arXiv:1312.0544 (2013)

  33. P.A. Lee, X.-G. Wen, Phys. Rev. Lett. 78, 4111 (1997)

    Article  ADS  Google Scholar 

  34. M. Ogata, H. Fukuyama, Rep. Prog. Phys. 71, 036501 (2008)

    Article  ADS  Google Scholar 

  35. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1996)

  36. C.P. Poole, R. Prozorov, H.A. Farach, R.J. Creswick, Superconductivity, 3rd edn. (Elsevier, Amsterdam, 2014)

  37. Y. Zhong, L. Zhang, H.-T. Lu, H.-G. Luo, Physica B 462, 1 (2015)

    Article  ADS  Google Scholar 

  38. T. Li, arXiv:1101.0193 (2011)

  39. W.N. Hardy, D.A. Bonn, D.C. Morgan, R. Liang, K. Zhang, Phys. Rev. Lett. 70, 3999 (1993)

    Article  ADS  Google Scholar 

  40. C. Panagopoulos, J.R. Cooper, T. Xiang, Phys. Rev. B 57, 13422 (1998)

    Article  ADS  Google Scholar 

  41. T.M. Rice, K.-Y. Yang, F.C. Zhang, Rep. Prog. Phys. 75, 016502 (2012)

    Article  ADS  Google Scholar 

  42. P.J. Hirschfeld, N. Goldenfeld, Phys. Rev. B 48, 4219 (1993)

    Article  ADS  Google Scholar 

  43. T. Tohyama, S. Maekawa, Phys. Rev. B 64, 212505 (2001)

    Article  ADS  Google Scholar 

  44. M.-S. Kim, J.A. Skinta, T.R. Lemberger, A. Tsukada, M. Naito, Phys. Rev. Lett. 91, 087001 (2003)

    Article  ADS  Google Scholar 

  45. J.-P. Hu, H. Ding, Sci. Rep. 2, 381 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Lu, HT. & Luo, HG. Superfluid density in the slave-boson theory. Eur. Phys. J. B 89, 28 (2016). https://doi.org/10.1140/epjb/e2015-60280-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60280-5

Keywords

Navigation