Skip to main content
Log in

Giant magnetoresistance of edge current between fermion and spin topological systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A spin-1/2 subsystem conjoined along a cut with a subsystem of spinless fermions in the state of topological insulator is studied on a honeycomb lattice. The model describes a junction between a 2D topological insulator and a 2D spin lattice with direction-dependent exchange interactions in topologically trivial and nontrivial phase states. The model Hamiltonian of the complex system is solved exactly by reduction to free Majorana fermions in a static ℤ2 gauge field. In contrast to junctions between topologically trivial phases, this junction is defined by chiral edge states and direct interaction between them for topologically nontrivial phases. As a result of the boundary interaction between chiral edge modes, the edge junction is defined by the Chern numbers of the subsystems: such gapless edge modes with the same (different) chirality switch on (off) an edge current between topological subsystems. The sign of the Chern number of spin subsystem is changed in an external magnetic field, thus the electric current strongly depends both on a direction and a value of an applied weak magnetic field. We provide a detailed analysis of the edge current and demonstrate how to switch on (off) the electric current in the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.Yu. Kitaev, Ann. Phys. 321, 2 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  2. X.-G. Wen, Phys. Rev. D 68, 065003 (2003)

    Article  ADS  Google Scholar 

  3. H. Yao, S.A. Kivelson, Phys. Rev. Lett. 99, 247203 (2007)

    Article  ADS  Google Scholar 

  4. C. Wu, D. Arovas, H.-H. Hung, Phys. Rev. B 79, 134427 (2009)

    Article  ADS  Google Scholar 

  5. X.-F. Shi, Y. Chen, J.Q. You, Phys. Rev. B 82, 174412 (2010)

    Article  ADS  Google Scholar 

  6. S. Dusuel, K.P. Schmidt, J. Vidal, R.L. Zaffino, Phys. Rev. B 78, 125102 (2008)

    Article  ADS  Google Scholar 

  7. Z. Nussinov, G. Ortiz, Phys. Rev. B 79, 214440 (2009)

    Article  ADS  Google Scholar 

  8. V. Lahtinen, A.W.W. Ludwig, J.K. Pachos, S. Trebst, Phys. Rev. B 86, 075115 (2012)

    Article  ADS  Google Scholar 

  9. V. Lahtinen, A.W.W. Ludwig, S. Trebst, Phys. Rev. B 89, 085121 (2014)

    Article  ADS  Google Scholar 

  10. H. Yao, S.-C. Zhang, S.A. Kivelson, Phys. Rev. Lett. 102, 217202 (2009)

    Article  ADS  Google Scholar 

  11. V. Chua, H. Yao, G.A. Fiete, Phys. Rev. B 83, 180412(R) (2011)

    Article  ADS  Google Scholar 

  12. I.N. Karnaukhov, Phys. Rev. B 86, 075139 (2012)

    Article  ADS  Google Scholar 

  13. I.N. Karnaukhov, J. Phys. A 45, 444018 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  14. I.N. Karnaukhov, Europhys. Lett. 102, 57007 (2013)

    Article  ADS  Google Scholar 

  15. I.N. Karnaukhov, I.O. Slieptsov, Europhys. Lett. 109, 57005 (2015)

    Article  ADS  Google Scholar 

  16. L.-M. Duan, E. Demler, M.D. Lukin, Phys. Rev. Lett. 91, 090402 (2003)

    Article  ADS  Google Scholar 

  17. A. Micheli, G.K. Brennen, P. Zoller, Nat. Phys. 2, 341 (2006)

    Article  Google Scholar 

  18. A.Yu. Kitaev, Phys. Usp. 44, 131 (2001)

    Article  ADS  Google Scholar 

  19. J. Alicea, Y. Oreg, G. Refael, F. Von Oppen, M.P.A. Fisher, Nat. Phys. 7, 412 (2011)

    Article  Google Scholar 

  20. F.S. Nogueira, I. Eremin J. Phys.: Condens. Matter 24, 325701 (2012)

    Google Scholar 

  21. W. Huang, E. Taylor, C. Kallin, Phys. Rev. B 90, 224519 (2014)

    Article  ADS  Google Scholar 

  22. Y.-W. Lee, Y.-L. Lee, Phys. Rev. B 89, 125417 (2014)

    Article  ADS  Google Scholar 

  23. A.P. Protogenov, E.V. Chulkov, V.A. Verbus, Phys. Rev. B 88, 195431 (2013)

    Article  ADS  Google Scholar 

  24. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  25. B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  26. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  27. A. Roth, C. Brüne, H. Buhmann, L.W. Molenkamp, J. Maciejko, X.-L. Qi, S.-C. Zhang, Science 325, 294 (2009)

    Article  ADS  Google Scholar 

  28. C. Brüne, A. Roth, H. Buhmann, E.M. Hankiewicz, L.W. Molenkamp, J. Maciejko, X.-L. Qi, S.-C. Zhang, Nat. Phys. 8, 485 (2012)

    Article  Google Scholar 

  29. F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  30. I.N. Karnaukhov, I.O. Slieptsov, Eur. Phys. J. B 87, 230 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  31. Y. Nakajima, P.S. Syers, X. Wang, R. Wang, J. Paglione, arXiv:1312.6132v1 [cond-mat.str-el] (2013)

  32. J. Yong, Y. Jiang, X. Zhang, J. Shin, I. Takeuchi, R.L. Greene, arXiv:1502.00547 [cond-mat.str-el] (2015)

  33. S. Biswas, R. Nagarajan, S. Sarkar, K.R. Amin, M.C. Hatnean, S. Tewari, G. Balakrishnan, A. Bid, arXiv:1502.03200v1 [cond-mat.mes-hall] (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor O. Slieptsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slieptsov, I.O., Karnaukhov, I.N. Giant magnetoresistance of edge current between fermion and spin topological systems. Eur. Phys. J. B 88, 178 (2015). https://doi.org/10.1140/epjb/e2015-60175-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60175-5

Keywords

Navigation