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Abstract. Here we investigate the influence of a constant magnetic field on the energy levels and optical
properties of excitons in a double quantum disk (quantum molecule). Taking into account the cylindrical
symmetry of the double disk we calculate the wave functions and excitonic energies when the external
constant magnetic field is applied along the symmetry axis. Having the eigenfunctions and eigenvalues and
using the long-wave approximation we can compute all the optical functions. The double quantum dot
is considered as one system rather than two interacting dots separated by narrow barrier. The screened
Coulomb interaction between an electron and a hole is assumed. Since in the given structure the separation
of the relative- and center-of-mass motion of the electron and the hole is not possible, we use an approach
where the six-dimensional eigenvalue problem is transformed into the equivalent eigenvalue problem given
by the system of the coupled two-dimensional second order differential equations. The so obtained differ-
ential equations are solved numerically. As an example, we give detailed results for a InP/InGaP double
quantum dot. Satisfactory agreement with the available experimental data is obtained.

1 Introduction

The development of the optoelectronic devices gains the
interest in the electronic and optical properties of various
semiconductor nanostructures including quantum wires,
quantum rods, quantum dots and double quantum dots.
The influence of excitonic effects on the optical functions
(oscillator strengths, absorption coefficient, dielectric sus-
ceptibility, etc.) is very important from both experimental
and theoretical points of view [1–8]. The presence of ex-
ternal static electric and/or magnetic fields significantly
modifies the electronic structure and optical spectra of
nanostructures and a number of investigations has been
carried out to understand and describe the problem. The
influence of the magnetic field on the optical spectra of
magnetoexcitons in quantum disks was analyzed theoret-
ically and investigated experimentally in a series of pa-
pers. The (far from completeness) list of references can
be found, for example, in reference [9]. Recently, the tech-
nological progress gives the possibility of creating more
complicated structures than single quantum dots, quan-
tum disks, etc. The simplest example of such a structure
is a pair of quantum dots, also called a double quantum
dot, see, for example [10]. More complicated structures
as, for example, triple and quadruple quantum dots, or
triple quantum rings, can also be fabricated and investi-
gated (for example [11–13]). All the problems, related to
the electronic and optical properties, can also be inves-
tigated in the case of the mentioned multiple quantum
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nanostructures. Here we consider the optical properties of
a double quantum dot, using the approach described in
reference [9].

The proposed theoretical approach enables to calcu-
late the magnetic field dependent excitonic energy spec-
trum and wave functions. Having wave functions we are
able to determine the magnetic field dependent excitonic
susceptibility and the complex dielectric function.

The paper is organized as follows. In Section 2 we
present the theoretical model and briefly describe the
transformation of the six-dimensional eigenvalue problem
to the equivalent system of coupled two-dimensional sec-
ond order differential equations. Numerical examples for
a chosen double quantum dots are presented in Section 3.
We present our conclusions in Section 4.

2 The model

We consider the double quantum dot (quantum molecule)
exhibiting cylindrical symmetry, which is exposed to the
external static magnetic field applied along the symmetry
axis (Fig. 1). The interacting electron-hole pair inside the
quantum molecule forms the magnetoexciton character-
ized by its own energy spectrum and the corresponding
wave functions, which are dependent on six coordinates.
The effective masses of both charged particles are in gen-
eral anisotropic and usually different for the disks and for
the barrier material. The steplike confinement potential
at the disks boundaries has a finite value, different for an
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Fig. 1. Magnetoexciton in a double quantum dot.

electron and a hole. The analytical calculations for a quan-
tum molecule are very similar to those, which were per-
formed for the nanostructures exhibiting cylindrical sym-
metry and presented in reference [9]. Here we repeat the
basic equations, briefly describe the method of solution
and give some remarks on numerical computations.

The Hamiltonian describing the system is as follows:

Ĥ = Ĥe + Ĥh + Veh, (1)

where Veh = −e2/(4πε|r|) is the screened Coulomb in-
teraction potential. Making use of cylindrical coordinates
rj = (ρj , φj , zj), we write the one-particle Hamiltonians
in the form

Ĥj = Ĥj‖ + Ĥjz + Vj,conf , (2)
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(j = e, h; qj = ∓e). The z-axis is parallel to the sym-
metry axis and to the external magnetic field. The mass
tensors m

j
= diag(m‖j ,m‖j,mzj) elements have differ-

ent values inside and outside the nanostructure. We use
the steplike confinement potentials Vj,conf (ρj , zj) = 0 in-
side the quantum dots and Vj,conf = V0,j outside the
quantum dots. The dots, separated by the barrier of the
thickness d, have the same radius R, the heights are z1
and z2 as it is shown in Figure 1. The vector potential
Aj = 1

2B × rj is taken in the symmetrical gauge and the
magnetic field B = (0, 0, B). We introduce dimensionless
energies scaled in exciton Rydberg energy R∗ and spatial
variables � = ρ/a∗B scaled in the excitonic Bohr radius a∗B
using the following formulae:

a∗B =
4πε0

√
ε‖εz

m0μ‖e2
=

√
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a0, (4)
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where ε0, εz, ε‖ are the vacuum dielectric constant, rela-
tive dielectric constant in the z-direction, relative dielec-

tric constant in the direction perpendicular to the z-axis,
respectively; m0 is the free electron mass,

μ‖ = m‖em‖h/(m‖e +m‖h)

is the reduced mass expressed in m0 units; a0 and R∞
are the hydrogen atom Bohr radius and Rydberg energy,
respectively. Using the scaled variables we can write the
two-particle Schrödinger equation in the form
(
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(6)
where Ĥ‖j are the Hamiltonians defined in equation (3),
ε is the scaled energy, vc = (Ve,conf + Vh,conf )/R∗, and r
is the relative e-h distance:

r =
√
�2

e + �2
h − 2�e�h cos(φe − φh) + (ze − zh)2. (7)

It can be shown (see, for example, Ref. [9]) that the two
dimensional eigenvalue problem Ĥ‖ψ = εψ of the charged
particle in a circular well surrounded by the steplike po-
tential can be solved analytically. So, we can expand the
six dimensional wave function Ψ in equation (6) in terms
of two dimensional eigenfunctions for an electron and a
hole as follows:

Ψ (L) =
∑
n

f (L)
n (ze, zh)ψ(e)

n1m1
(�e, φe)ψ(h)

n2m2
(�h, φh). (8)

The index n is the abbreviation for four indices, i.e.
n = {n1,m1, n2,m2}, where n1 = 0, 1, 2, . . ., m1 =
0,±1,±2, . . . and n2 = 0, 1, 2, . . ., m2 = 0,±1,±2, . . . are
the quantum numbers describing the electron and the hole
states in a circular well, respectively. The total angular
momentum is conserved because of the axial symmetry of
the problem, so L = m1 + m2 is a good quantum num-
ber and the sum contains only the terms with fixed L, as
marked in the superscripts.

We insert the expansion (8) into equation (6) and ob-
tain the equations for the functions f (L)

n (ze, zh):
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where ε(e)n1m1 , ε
(h)
n2m2 are the energies of an electron and a

hole in a two dimensional well, respectively. The matrix
elements V n′

n (ze, zh) of Coulomb interaction energy are
fourfold integrals which can be reduced to triple integrals
by changing variables and performing one integration an-
alytically [9]. The shape of the diagonal matrix element
V 1

1 (z) is displayed in Figure 2. From Figure 2 one can see
that the coupling between subsequent equations became
weaker with increasing value of the upper index. It means
that we can solve numerically only several equations to
get satisfactory accuracy.
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The system of coupled partial differential equa-
tions (9) is the eigenvalue problem for the set of functions
f

(L)
n (ze, zh) and for the total energy (eigenvalue) ε of the

electron-hole pair inside the nanostructure. The method
of solution of equation (9) has been described in refer-
ence [9] (see also, for example, Ref. [14]). The method uses
the discretization in space and a conversion of differential
equations into a set of linear algebraic equations. The dis-
cretization was performed in the volume of a sufficiently
large cylinder containing both quantum dots. The cylinder
is coaxial with the z-axis of the quantum molecule.

3 Results and discussion

The above described calculation scheme was applied to the
problem of the InAs/GaAs two quantum disks with the
radiiR, thicknesses z1 and z2, interdot distance d; exposed
to uniform static magnetic field parallel to the z-axis. The
basic band parameters (effective masses, band mismatch,
dielectric constant) for the electron and the heavy hole
were taken to be the same as in the paper by Thu and
Voskoboynikov [15]: inside the dot:me = 0.044 m0,mhh =
0.254 m0, Ve,conf = 474 meV, Vh,conf = 203 meV, outside
the dot: me = 0.067 m0,mhh = 0.350 m0, m0 being the
free electron mass. We take the averaged dielectric con-
stant ε = 14.0. We obtained the eigenfunctions and energy
states from numerical solution of equations (9). We stud-
ied the influence of the applied magnetic field strength and
the in-z direction confinement shape (the structure sym-
metric or asymmetric) on the energy levels and the shape
of the wavefunctions for the ground and excited states. In
Figure 3c we display the energy levels as functions of the
applied magnetic field for the symmetric shape molecule.
We checked that every presented level is doubly degen-
erated. The degeneracy appears because the upper and
lower quantum dots (see Fig. 1) are identical, so we have
the same probability to find the particle in the upper or
lower disk as can be seen in Figures 3a and 3b. Addition-
ally the Coulomb interaction between the dots is weak
because of the relatively thick (d = 5.0 nm) separating
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Fig. 3. Probability density projection on the (ze, zh) plane for
magnetic field B = 2 T. The molecule is symmetrical: z1 =
z2 = 3.0 nm, d = 5.0 nm: (a) ground state, (b) first excited
state. (c) Relative positions of (almost doubly degenerated)
energy levels as functions of the applied magnetic field.

barrier. The degeneracy of the levels is removed when the
separating barrier is thinner as it can be seen in Figure 4
where d = 3.0 nm. In this case the particles can tunnel
through the barrier between the lower and upper dot, ad-
ditionally the Coulomb interaction is stronger.

The same as in Figure 3 is displayed in Figure 5 for an
asymmetric shape of the double dot (the disks of different
heights). We observe differences as compared to the sym-
metric shape, both in the wave functions and in energy
diagram. This is not visible in the scale of the presented
figures but the curves representing energy versus magnetic
field do not cross each other. The anticrossing of energy
states is due to Coulomb interaction.

Having the energies and wave functions, we can use
the Fermi Golden Rule or, alternatively, the real density
matrix approach (see, for example, Refs. [16–18]), to ob-
tain the optical functions, including magnetoabsorption
and the magnetic field dependent dielectric tensor for the
considered nanostructure. The results for the imaginary
parts of the magnetosusceptibility are shown in Figure 6.

Experimental investigations of magnetooptical proper-
ties of nanostructures have shown that the main effect on
the ground state is the blue-shift of the energy, roughly
proportional to B2, with a slope which is specific for
the given nanostructure and depends on the configuration
(Faraday or Voigt). Such effect was observed for quantum
wells (see, for example, Ref. [19]), quantum dots [20] and
quantum disks [21]. It was also observed for a system of
InP/InGaP two vertically stacked dots [22,23], which cor-
responds to the situation discussed above. The detailed
analysis performed in a series of papers (see, for example,
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Fig. 4. Probability density projection on the (ze, zh) plane
for magnetic field B = 2 T. The molecule is symmetrical:
z1 = z2 = 3.0 nm, d = 3.0 nm: (a) ground state, (b) excited
state. (c) Relative positions of energy levels as functions of the
applied magnetic field.
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Fig. 5. Probability density projection on the (ze, zh) plane for
magnetic field B = 2 T. The molecule is asymmetrical: z1 =
3.0 nm, z2 = 3.2 nm, d = 5.0 nm: (a) ground state, (b) excited
state. (c) Relative positions of energy levels as functions of the
applied magnetic field.

Refs. [10,24,25]) shows that the ground state is determined
by the light hole located outside the dots, so we have a
type-II configuration for the exciton. Our model was pri-
marily developed for type-I exciton, but it also can be used
to describe type-II exciton when we assume that the dots
are the barriers for the light hole. We have performed nu-
merical computations using the material parameters listed
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Fig. 6. Imaginary part of magnetosusceptibility corresponding
to Figures 3–5 for B = 5 T.

in Table I of reference [24], for the conduction-band ef-
fective masses we used 0.0795m0 for the electron inside
the dot and 0.092m0 outside the dot [10]. We assumed
rectangular barriers and their heights, calculated within
CM (continuum mechanical) model are taken from ref-
erence [25]. Our numerical calculations showed that we
obtain the same results for light and heavy holes as pre-
sented in reference [24] for two vertically coupled dots.
The slightly better agreement with experimental data can
be obtained if we assume that the disk radius is equal to
7 nm; the result is presented in Figure 7. As it is displayed
in Figure 7, using our computational scheme, we are able
to fit the experimental results from references [22,23] for a
quite large interval of the applied magnetic field strength
(up to 35 T). For large values of the magnetic field we ob-
serve a deviation from the parabolic behaviour. The devia-
tion from parabolic shape of the diamagnetic shift for high
magnetic field can not be explained within our model. One
of the reasons is that we apply the single band effective
mass approximation. The approach proposed by Mlinar
et al. [10] is more adequate to describe the nanostructures
when type-I and type-II exciton configuration should be
taken into account.

4 Concluding remarks

We have applied a calculational scheme, developed for
the case of cylindrically symmetric nanostructures, to a
double quantum dot. The double dot was not considered
as a two-particles structure, but it was modelled by
an appropriate shape of the confinement potential. The
method allows to compute the eigenfunctions, the en-
ergy levels and thus the optical properties. In addition,
the effects of an applied static magnetic field have been
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Fig. 7. Comparison of the calculated (full line) diamagnetic
shift with experimental results [22,23] (circles) for InP/InGaP
double quantum dot. The dots are identical with radius
R = 7 nm and thickness d = 2 nm, the interdot distance is
equal to 4 nm.

calculated. The advantage of the method is that not only
the ground energy state, but also higher energy states, can
be obtained. Modelling triple and quadruple quantum dots
by an appropriate confinement potential, we can use the
same method to obtain the optical properties in the exci-
tonic energy region. The numerical calculations have been
performed for a structure consisting of two InAs/GaAs
quantum disks with the radii R, thicknesses z1 and z2,
interdot distance d; exposed to uniform static magnetic
field parallel to the z-axis. The impact of the type of the
structure (symmetric or asymmetric) and of the interdot
distance has been discussed. As it has been shown in pre-
vious papers, the method is exact and the convergence
can be controlled. The results are in a qualitative agree-
ment with those obtained by a different approach as, for
example, in references [24,26].
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11. M. Tadić, F.M. Peeters, Phys. Rev. B 70, 195302 (2004)
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19. O. Jaschinski, M. Vergöhl, J. Schoeness, A. Schlachetzki,
Phys. Rev. B 57, 13086 (1998)

20. R. Cingolani, R. Rinaldi, H. Lipsanen, M. Sopanen, R.
Virkkala, K. Maijala, J. Tulkki, J. Ahopelto, K. Uchida,
N. Miura, Y. Arakawa, Phys. Rev. Lett. 83, 4832 (1999)

21. P.D. Wang, J.L. Merz, S. Fafard, R. Leon, D. Leonard, G.
Medeiros-Ribeiro, M. Oestreich, P.M. Petroff, K. Uchida,
N. Miura, H. Akiyama, H. Sakaki, Phys. Rev. B 53, 16458
(1996)

22. M. Hayne, R. Provoost, M.K. Zundel, Y.M. Manz, K.
Eberl, V.V. Moshchalkov, Phys. Rev. B 62, 10324 (2000)

23. M. Hayne, R. Provoost, M.K. Zundel, Y. Manz, K. Eberl,
V.V. Moshchalkov, Physica E 6, 436 (2000)

24. K.L. Janssens, B. Partoens, F.M. Peeters, Phys. Rev. B
69, 235320 (2004)
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