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Abstract. The exchange field for molecular states of double quantum dot, induced by two ferromagnets
coupled to the device in T-shaped configuration, is defined and calculated. It is found, that in the regime
of strong coupling between quantum dots, the dependence of the exchange field on this coupling becomes
nontrivial. In particular, it changes the sign a few times to eventually vanish in the limit of infinite inter-dot
coupling. The excitation energies of double quantum dot are calculated and the results used to predict the
conditions for suppression of the two-stage Kondo effect in the considered nanostructure.

1 Introduction

When a discrete level is coupled to a large system of con-
tinuous energy spectrum, it is not only broadened, but
also shifted [1]. This applies, in particular, to a quantum
dot (QD) coupled to a metallic lead: the charge fluctua-
tions give rise to the renormalization of the dot level [2].
If the coupling to the lead is spin dependent, this renor-
malization also depends on spin, leading to the splitting
of the dot’s level, often called the exchange field. It can be
estimated through the Anderson’s scaling approach [3,4]
or numerical renormalization group calculations [5,6], as
well as within the perturbation theory, second order in
the interaction with the lead, where usual logarithmic di-
vergences cancel out when one takes the difference of the
shifts for levels of opposite spins [7]. The exchange field
was also observed experimentally [8,9]. Its values are of the
order of fraction of meV; the magnetic field correspond-
ing to such a splitting for an electron with spin s = 1/2
and gyromagnetic ratio g = 2 is a few Tesla [9]. The es-
timations of the exchange field based on numerical renor-
malization group calculations were found to be in good
agreement with experiment [9]. Moreover, as dependent
significantly on the dot’s energy level, the exchange field
is very important for spintronic applications, as a tool en-
abling manipulation of the single electron’s spin (localized
on the quantum dot) by only electrical means [10].

In the past few years, transport properties of dou-
ble quantum dots (DQDs), from which only one is cou-
pled directly to the leads, and the second is side-coupled
to the first one, were addressed in a number of pa-
pers [11–14]1. This configuration is often referred to as

a e-mail: kpwojcik@amu.edu.pl
1 See also references cited in references [11–14].

Fig. 1. Scheme of the considered system.

T-shaped DQD. In such systems, the two-stage Kondo
effect occurs: the usual Kondo effect is suppressed at suf-
ficiently low temperatures, due to singlet formation in
DQD subsystem [12,15,16]. This singlet, however, can be
broken by the magnetic field, which restores the Kondo
effect [17]. In the present paper a similar system with fer-
romagnetic electrodes (Fs) is considered (see Fig. 1). It
is shown, by means of perturbative calculation, that the
exchange field can be considered as an alternative mech-
anism of breaking the singlet and restoring the Kondo ef-
fect. This is confirmed by numerical renormalization group
calculations [18].

It is worth stressing, that all the correlations in DQD
subsystem are treated analytically. The exchange field is
properly defined for all the eigenstates, whose energies are
obtained exactly for a rather general case2. In particular,
adjusting of Coulomb energies and energy levels of both
dots independently is allowed. The latter is especially im-
portant for applications, where one should be able to tune
the exchange field by changing the energy levels of QDs.

2 Less general case was studied in reference [19].
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The article is organized as follows. In Section 2 the
Hamiltonian of DQD is presented and its eigenvalues and
eigenstates are calculated. Then, in Section 3 the exchange
field for eigenstates of DQD is defined and the formula for
it is derived. Finally, the results are presented in Section 4.

2 The double-dot system

The Anderson model is used to describe quantum dots. It
is also assumed, that their mutual interaction is reduced
to the hopping between the dots. Thus, the Hamiltonian
of DQD subsystem has the form

HDQD =
∑

ασ

εαd
†
ασdασ +

∑

σ

t
(
d†1σd2σ + h.c.

)

+
∑

α

Uα
2

(
∑

σ

d†ασdασ − 1

)2

− U1 + U2

2
. (1)

The constant term is set such that unoccupied DQD has
energy equal to 0. The index α ∈ {1, 2} corresponds to
number of QD (see Fig. 1), while σ = ±1 denotes direction
of the spin. t denotes the hopping between the dots. d(†)

ασ

annihilates (creates) an electron of spin σ in dot α. The
Coulomb energy of dot α is Uα, while the energy level
for an electron of spin σ in the dot α is εα. The mean
detuning of dot’s level from particle-hole symmetric point
is ε = (ε2 + ε1)/2 + U , where U = (U2 + U1)/4. For
convenience the following notation is used: Δ = (U2 −
U1)/4, δ = (ε2 − ε1)/2 +Δ.

In addition, q denotes the normal-ordered charge of
DQD. Similarly, S denotes the total spin of DQD, and Sz
is used for its z component. Eigenstates are denoted |ei〉,
with i ∈ {1, . . . , 16}, while states from the basis of definite
occupation numbers have form |χ1χ2〉, where χα ∈ {0, ↑,
↓, 2} is the state of QDα.

The eigenvalues of HDQD are listed in Table 1. One
can clearly see charge U(1) and spin SU(2) symmetries.
The energies of the states in the q = 0, S = 0 subspace
are the roots of the following cubic polynomial,

ω3 + (2U − 6ε)ω2 − 4
(
t2 + 2Uε+ δ2 − 3ε2

)
ω

+ 8
[
t2ε+ U

(
ε2 − δ2

)
+ δ2ε− ε3

]
= 0. (2)

They can be expressed through radicals, but the resulting
expressions are somewhat cumbersome and for this rea-
son were not explicitly listed in Table 1. However, for spe-
cial cases they significantly simplify. Eigenvalues for some
of these cases are presented in Table 2. For ε = δ = 0
(ε1 = −U1/2, ε2 = −U2/2) the charge symmetry also be-
comes SU(2). Then, states: |e1〉, |e11〉, and |e16〉, form the
triplet of E = 0 (see column δ = 0 in Tab. 2 for E11).
Simultaneously, S = 1/2 doublets with q = ±1 become
degenerated.

In turn, the eigenstates are listed in Table 3. These cor-
responding to highest quantum numbers (q = ±2, S = 1)
are trivial. Expressions for states forming doublets are

Table 1. Exact eigenvalues of HDQD. Solutions of cubic secular
equation in q = 0, S = 0 subspace were not written explicitly.

State q Sz Ei

|e1〉 −2 0 0

|e2〉, |e3〉 −1 −1

2
,

1

2
ε − U − √

(Δ − δ)2 + t2

|e4〉, |e5〉 −1 −1

2
,

1

2
ε − U +

√
(Δ − δ)2 + t2

|e6〉, |e7〉, |e8〉 0 −1, 0, 1 2(ε − U)

|e9〉 0 0 E9

|e10〉 0 0 E10

|e11〉 0 0 E11

|e12〉, |e13〉 +1 −1

2
,

1

2
3ε − U − √

(Δ + δ)2 + t2

|e14〉, |e15〉 +1 −1

2
,

1

2
3ε − U +

√
(Δ + δ)2 + t2

|e16〉 +2 0 4ε

Table 2. Values of eigenenergies E9, E10 and E11 for different
limiting cases [19]. Each row corresponds to one of the three
solutions of equation (2) expressed through radicals.

State t = 0 δ = 0 U = 0

|e9〉 2(ε + δ) 2ε−U +
√

U2 + 4t2 2
(
ε +

√
t2 + δ2

)

|e10〉 2(ε − U) 2ε−U−√
U2 + 4t2 2

(
ε −√

t2 + δ2
)

|e11〉 2(ε − δ) 2ε 2ε

only a bit more complicated. They all can be written using
coefficients

ν± =
1√
2

√
1 ± δ −Δ√

t2 + (δ −Δ)2
, (3)

ν̃± =
1√
2

√
1 ± δ +Δ√

t2 + (δ +Δ)2
. (4)

Note, that for t = 0, ν± (ν̃±) are either 0 or 1, depending
on the sign of δ −Δ (δ +Δ), correspondingly. The three
remaining states, |e9〉, |e10〉, |e11〉, can be reasonably sim-
ply expressed through the coefficients dependent on the
respective eigenvalues,

ξ1i =
PiQi/t− 2t√

8t2 + 2P 2
i − 4PiQi + P 2

i Q
2
i /t

2
, (5)

ξ2i = −
√

2Pi√
8t2 + 2P 2

i − 4PiQi + P 2
i Q

2
i /t

2
, (6)

ξ3i =
2t√

8t2 + 2P 2
i − 4PiQi + P 2

i Q
2
i /t

2
, (7)

where Pi = 2(ε+ δ) − Ei and Qi = 2(ε− U) − Ei. Note,
that dependence of ξai on Ei (through Pi and Qi), means
in fact a complicated dependence on all the parameters of
the model. Moreover, if two of the energies E9, E10, E11
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Table 3. Eigenvectors of HDQD.

|e1〉 = |00〉,
|e2〉 = ν+| ↓ 0〉 − ν−|0 ↓〉,
|e3〉 = ν+| ↑ 0〉 − ν−|0 ↑〉,
|e4〉 = ν−| ↓ 0〉 + ν+|0 ↓〉,
|e5〉 = ν−| ↑ 0〉 + ν+|0 ↑〉,
|e6〉 = | ↓↓〉,
|e7〉 = (| ↓↑〉 + | ↑↓〉) /

√
2,

|e8〉 = | ↑↑〉,

|e9〉 = ξ1
9 |20〉 + ξ2

9
| ↓↑〉 − | ↑↓〉√

2
+ ξ3

9 |02〉,

|e10〉 = ξ1
10|20〉 + ξ2

10
| ↓↑〉 − | ↑↓〉√

2
+ ξ3

10|02〉,

|e11〉 = ξ1
11|20〉 + ξ2

11
| ↓↑〉 − | ↑↓〉√

2
+ ξ3

11|02〉,
|e12〉 = ν̃−| ↓ 2〉 − ν̃+|2 ↓〉,
|e13〉 = ν̃−| ↑ 2〉 − ν̃+|2 ↑〉,
|e14〉 = ν̃+| ↓ 2〉 − ν̃−|2 ↓〉,
|e15〉 = ν̃+| ↑ 2〉 − ν̃−|2 ↑〉,
|e16〉 = |22〉.

should happen to coincide, these expressions must become
ill-defined, because they constitute the components of the
eigenvectors, which must be different even if the eigen-
values are the same. Thus, one must be careful when an-
alyzing cases possessing special symmetries, where such
degeneracy may occur.

Similarly to the eigenvalues Ei, the coefficients ξai sim-
plify tremendously in some special cases, in particular

lim
t→0

(
ξ19 , ξ

2
9 , ξ

3
9

)
= (0, 0,±1),

lim
t→0

(
ξ110, ξ

2
10, ξ

3
10

)
= (0,±1, 0),

lim
t→0

(
ξ111, ξ

2
11, ξ

3
11

)
= (±1, 0, 0),

lim
δ→0

(
ξ19 , ξ

2
9 , ξ

3
9

)
= (−1, 0, 1)/

√
2,

lim
δ→0

(
ξ110, ξ

2
10, ξ

3
10

)
=

(
1,−√

2, 1
)
/2,

lim
δ→0

(
ξ111, ξ

2
11, ξ

3
11

)
=

(
1,+

√
2, 1

)
/2.

Note, that for t = 0 the eigenstates correspond to states
of definite occupation. The signs may vary depending on
model parameters.

3 The exchange field

Ferromagnets (Fs) are modeled very simply, neglecting
the Stoner splitting and the dependence of density of
states and hoppings on energy (for energies smaller than
the cutoff ±W , with 0 at the Fermi energy). The ferro-
magnetism is then taken into account via spin-dependent
coupling between Fs and DQD. In the linear response

regime, these assumptions allow for showing that two
parallely magnetized leads are equivalent by the unitary
transformation [20] to the one effective lead F. Denot-
ing by arωσ annihilation operator of an electron of en-
ergy ω and spin σ in left (r = L) or right (r = R)
ferromagnet, normalized such that the anti-commutator
{arωσ, a†r′ω′σ′} = δrr′δσσ′δ(ω − ω′), the transformation
reads the introduction of new operators,

cωσ = uσaLωσ + vσaRωσ, (8)
fωσ = −vσaLωσ + uσaRωσ, (9)

where uσ =
√
ΓLσ/(ΓLσ + ΓRσ) and vσ =

√
1 − u2

σ.
Then, both new operators fulfill the fermionic anticommu-
tation relations. Moreover, f -operators do not appear in
the tunnelling term of the Hamiltonian and can be omit-
ted. On the other hand, c-operators’ coupling is Γσ =
ΓLσ + ΓRσ.

In order to treat the coupling between DQD and F
with a perturbation theory, we write the Hamiltonian as
H = H0 +HI , with

H0 = HDQD +
∑

σ

∫ W

−W
ωc†ωσcωσdω , (10)

HI =
∑

σ

∫ W

−W

√
Γσ
π

(
d†1σcωσ + h.c.

)
dω. (11)

The coupling can be expressed as Γσ = (1 + pσ)Γ , where
p denotes the spin polarization of F. Denoting by |e∗i 〉 the
state of the system, in which DQD is in the state |ei〉 and
the effective F is in its ground state (all single-electron
levels below the Fermi surface are occupied, all above are
empty), one can write the zero-temperature expression for
the shift of the energy level Ei in the second order in HI ,

δEi =
∑

ψ �=e∗i
〈e∗i |HI |ψ〉 1

Ei − Eψ
〈ψ|HI |e∗i 〉, (12)

where |ψ〉 runs through all of the intermediate states in
the basis |e∗i 〉. Note that if the intermediate states had
been taken from the basis |χ1χ2〉, their unperturbed en-
ergy Eψ would not have been defined and the operator
(Ei −H0)−1(1− |e∗i 〉〈e∗i |) would have to be considered in-
stead of the sum over intermediate states in equation (12).

Since HI allows only single hops, all the possible in-
termediate states are of the form c

(†)
ωσ|e∗j〉, with the energy

Eψ = Ei + [±ω + (Ej − Ei)]. This results in the shift,

δEi =
∑

jσ

Γσ
π

{
|〈ej |d†1σ|ei〉|2

∫ W

−W

1 − θ(ω)
ω − (Ej − Ei)

dω

− |〈ej |d1σ|ei〉|2
∫ W

−W

θ(ω)
ω + (Ej − Ei)

dω

}
. (13)

Notice that δEi is linear in Γ and contains two parts: one
independent of p, and one linear in p. Let the exchange
field in the state |ei〉 be denoted Δεexi and defined as the
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latter of those, normalized by the z-component of the spin
of |ei〉, i.e. δEi = δEi|p=0 + SzΔε

ex
i , if only Sz �= 0. For

Sz = 0, the modules of respective matrix elements of d(†)
1σ

do not depend on spin direction, nor do the energies of all
states, thus, the terms corresponding to different σ can-
cel out and the exchange field is 0. Extracting the part
proportional to p and performing elementary integrals,
one obtains the general, exact expression for the exchange
field,

Δεexi =
∑

jσ

σpΓ

πSz
log

∣∣∣∣
Ej − Ei

W + (Ej − Ei)

∣∣∣∣

×
(
|〈ej |d†1σ |ei〉|2 + |〈ej |d1σ|ei〉|2

)
. (14)

SZ was introduced to the definition of the exchange field
to make the clear correspondence between Δεex and the
effective magnetic field B = Δεex/(gμB), which would
cause the same splitting of the multiplets.

4 Results

In Section 4.1 it is shown, how the exchange field ob-
tained for a single QD is affected by the presence of QD2.
Then, in Section 4.2 the exchange fields in different states
are compared and their influence on the ground state of
the DQD subsystem is analyzed. The signature of the ex-
change field in the conductance of the system is discussed
in Section 4.3. Finally, in Section 4.4, the limitations of
the considered method are examined.

4.1 The role of inter-dot interaction

Setting t = 0 and U2 = ε2 = 0, one practically obtains a
single QD coupled to the ferromagnet, plus a free orbital
of zero energy. For t = 0 the basis states |ei〉 coincide
with states |χ1χ2〉, except for |e7〉 and |e8〉, where, re-
spectively, the sum and the difference of two such states
occurs. For any of basis state |ei〉 having the form |σχ2〉,
the result (14) simplifies to

SzΔε
ex
|σχ2〉 =

σpΓ

π
log

∣∣∣∣
ε1

ε1 + U1
· W + (ε1 + U1)

W − ε1

∣∣∣∣ , (15)

which has a nice limit for W → ∞, namely

SzΔε
ex
|σχ2〉 −→

W→∞
σpΓ

π
log

∣∣∣∣
ε1

ε1 + U1

∣∣∣∣ . (16)

This is the result obtained by Martinek et al. in refer-
ence [4] for a single quantum dot coupled to a ferromag-
netic lead.

Note, that U1 = 0 implies Δεex = 0, also for finite W .
This is caused by the fact, that particle-like and hole-like
processes cancel each other. The exchange field diverges
for resonant positions of the dot’s level and vanishes in
the particle-hole symmetric point (cf. Fig. 2), solid line.

-0.4

-0.2

0

0.2

0.4

-1.5 -1 -0.5 0 0.5

Δ
εe

x
8
/
Γ

ε1/U1

t = 0
t = Γ/5
t = Γ
t = 5Γ
t = 10Γ

Fig. 2. The dependence of the exchange field in the spin-up
triplet component |e8〉 on QD1 level position, for finite U1 =
W/2 = 5Γ , p = 0.4, U2 = ε2 = 0 and different t.

Notice, that in general also Δεex may become divergent in
the limit W → ∞. For this reason that limit was avoided
and W of the order of the highest relevant energy scale
was used, as suggested by the scaling theory [2].

In Figure 2, it is shown how the result from equa-
tion (16) changes, when t becomes nonzero (for both dots
occupied with a single spin-up electron each). It is clearly
seen, that the divergences at the resonances are then re-
moved and the peaks diminish, eventually the exchange
field changes sign for really strong t. In the particle-hole
symmetric point, ε1 = −U1/2, Δεex8 = 0 for all t.

Finally, in Figure 3, the density plots of a dependence
of the exchange field in the triplet state on both dots’
energy levels are presented, for different values of t, in
the case of equal Coulomb interactions on both dots. In
Figure 3a, one can clearly see, that for t = 0 the results
are qualitatively equivalent to those obtained in Figure 2,
where only QD1 was interacting. In agreement with intu-
ition, ε2 plays no role in such a situation. However, with
increasing t, the importance of the QD2 level position be-
comes clear (cf. Fig. 3b). Further increase of t causes the
peaks of Δεex to change their positions (see Figs. 3c–3e),
such that for t = 10Γ the sign of the exchange field is at
most of the dots’ level positions opposite to the one for
t = 0 (see Fig. 3f). After another significant changes of
peaks positions while increasing t even further (cf. Figs. 3g
and 3h), the exchange field starts to diminish for t = 20Γ
(see Fig. 3i), to vanish completely in the limit t→ ∞. Ac-
tually, the fact that Δεexi → 0 for t→ ∞ is rigorously true
for all the molecular states and can be proven as follows.

At first, note, that all the matrix elements of d(†)
ασ in the

eigenbasis have finite limits. On the contrary, all the en-
ergies of states with S = 1/2 asymptotically equal ±t. E8

and E9 asymptotically equal ±2t, the other energies have
finite, nonzero limits for t → ∞. In equation (14) ener-
gies are present under the logarithm, always as differences.
The logarithm containing energy difference (Ej −Ei) has
nonzero coefficient only for such pairs (i, j), that some of

http://www.epj.org
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ε2
U2

Δεex/Γ

ε2
U2

ε2
U2

ε1/U1 ε1/U1 ε1/U1

-1

-0.5

0

0.5

-1

-0.5

0

0.5

1

a) t = 0 b) t = Γ c) t = 2.5Γ

-1

-0.5

0

0.5
d) t = 5Γ e) t = 7.5Γ f) t = 10Γ

-1.5

-1

-0.5

0

0.5

-1.5 -1 -0.5 0 0.5

g) t = 12.5Γ

-1 -0.5 0 0.5

h) t = 15Γ

-1 -0.5 0 0.5

i) t = 20Γ

Fig. 3. The dependence of the exchange field in the spin-up
triplet component Δεex

8 on the level positions of both dots for
U1 = U2 = W/2 = 5Γ , p = 0.4 and different t, as indicated in
the figure. Insets in the bottom left corners indicate the range
of positive (negative) data in black (white), for readability of
the plots in the gray-scale.

〈ei|d(†)
ασ|ej〉 is nonzero. As can be easily checked case by

case, all the important energy differences diverge in the
limit t→ ∞, so the corresponding logarithms vanish (cf.,
Eq. (14)). This means, that for very large t, the eigen-
states of DQD are too far from each other (in the sense of
energy difference) to allow significant charge fluctuations.

4.2 The exchange field for different states

In the case of a single quantum dot coupled to F, the
exchange field is either zero (for states of Sz = 0), or
given by equation (16). This means that it influences the
energy spectrum of the dot identically to the magnetic
field B = Δεex/(gμB). It is not exactly the case for DQD.
Here, the corresponding magnetic field must be different
for different states. However, the multiplet structure of the
eigenbasis is preserved. This is illustrated in Figure 4. If
the corresponding magnetic field were the same in all the
states, all the curves in Figure 4 would coincide. Instead,
the peaks appear at different positions for different curves.
In the range of small negative values of ε1, Δεexi even
changes the sign, depending on i.

Even more interesting result is obtained, when one an-
alyzes the ground state of the DQD subsystem with cor-
rection coming form the exchange field. Having defined
the ground state energy as EGS ≡ miniEi (for a fixed set
of model parameters), the unperturbed excitation ener-
gies Ei − EGS are plotted as functions of QD1 level po-
sition in Figure 5a, and the excitation energies corrected
by the exchange field, Ei + SzΔε

ex
i − EGS, are shown in

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5

Δ
εe

x
i
/
Γ

ε1/U1

i = 2, 3 (q=−1, S= 1
2 )

i = 4, 5 (q=−1, S= 1
2 )

i = 6, 8 (q=0, S=1)
i = 12, 13 (q=+1, S= 1

2 )
i = 14, 15 (q=+1, S= 1

2 )

Fig. 4. The dependence of the exchange field on the QD1 level
position, for U1 = U2 = W/2 = 5Γ , p = 0.4, ε2 = 0 and t = Γ .
In the states not listed in the legend, Δεex

i = 0.

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5

(E
i
−
E

G
S
)/

Γ

ε1/U1

Δεex neglected

a)

-1 -0.5 0 0.5
ε1/U1

Δεex included

b)
i = 4, 5
i = 11
i = 1
i = 12, 13
i = 6, 7, 8
i = 2, 3
i = 10

Fig. 5. (a) The difference between Ei and the ground state
energy EGS vs. ε1, for U1 = U2 = W/2 = 5Γ , p = 0.4, ε2 = 0
and t = Γ/3. (b) The same for Ei +SzΔεex

i instead of Ei, with
EGS still obtained without Δεex

i .

Figure 5b. It is visible, that in the Coulomb blockade
regime, the ground state of isolated DQD is either the
singlet state |e10〉, or degenerate doublet, |e2〉, |e3〉. The
triplet |e6〉, |e7〉, |e8〉 is a low-lying excited state. However,
when DQD is coupled to F, due to strong renormalization
by the exchange field, the state |e6〉 becomes the ground
state for ε1 ≈ −U1, while in very narrow region around
ε1 ≈ −0.25U1, |e8〉 is the ground state. Moreover, |e6〉
becomes degenerate with a singlet state |e10〉 in the vicin-
ity of ε1 = −U1. Because these two states differ in Sz
by unity and have the same charge, they are degenerate
states connected by a single spin-flip process, and as so,
they can contribute to the formation of the single-stage
Kondo effect. The second stage, when the singlet is non-
degenerate ground state of DQD, is suppressed. Thus, the
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-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5

Sz

ε1/U1

t = 2Γ
t = Γ
t = Γ/2
t = Γ/3
t = Γ/5
t = Γ/10

Fig. 6. The average value of z-component of DQD spin for
T = 10−4Γ , different t and other parameters the same as in
Figure 5.

large exchange field in triplet state is the condition for
the two-stage Kondo effect to be suppressed. This is in-
deed confirmed by the numerical renormalization group
calculations [18].

Knowing energies of DQD states, corrected by Δεex,
one can calculate expectation values of different opera-
tors, assuming equilibrium probabilities for eigenstates.
Here, the z component of DQD spin is considered (see
Fig. 6). Small finite temperature, T = 10−4Γ , was used
to make the curves smoother in the regions of degener-
ated ground state. For weak t, see curve for t = Γ/10,
〈Sz〉 �= 0 in the region of Coulomb blockade. It is neg-
ative (−1/2) for negative detuning, and reaches +1 for
positive detuning. However, it vanishes in the small re-
gion around particle-hole symmetric point. For ε1 ≈ −U1

the triplet component becomes the ground state, resulting
in 〈Sz〉 = −1. For large, positive detunings, 〈Sz〉 = +1/2.
On the contrary to the case of small t, for t = 2Γ , 〈Sz〉 = 0
for most of QD1 level positions. Only when ε1 > 0, the
average spin becomes −1/2, which is opposite to what
happens for t = Γ/10. This is caused by the fact, that
Δεex can change the sign with increasing t; compare Fig-
ure 2. For intermediate values of the inter-dot coupling,
Γ/5 < t < Γ , the region of 〈Sz〉 = 0 in the center of
Coulomb valley becomes larger upon increasing t, and the
region of 〈Sz〉 = +1/2 appears for ε1 slightly larger than
−U1/2. Moreover, for ε1 ≈ −0.25U1 the t-dependence of
〈Sz〉 becomes highly nontrivial. For t = Γ/5, there occurs
a dip, suggesting degeneracy between states of Sz = 1
and Sz = 1/2. For t = Γ/3, the Sz = 1 state is the ground
state only in very narrow region of ε1 (see also Fig. 5).
For t = Γ/2, one sees a sharp dip, reaching 〈Sz〉 = −1/2,
instead of peak reaching 〈Sz〉 = 1, present for t = Γ/3.
This dip is significantly wider for t = Γ . Nevertheless,
even in this case, for ε1 > 0, 〈Sz〉 = +1/2, contrary to the
case of t = 2Γ . The fact that large range of 〈Sz〉 values
is possible in the region −0.25U1 < ε1 < 0 corresponds to
large variety of values of Δεex for different states, visible
in Figure 4 for the case of t = Γ . In particular, note that
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Fig. 7. The current through DQD for T = 10−4Γ , t = Γ and
other parameters the same as in Figure 5, obtained with DQD
eigenstates energies corrected by the exchange field. Right inset
shows enlarged region ε1 ∈ [−0.3, 0]U1, eV ∈ [−0.2, 0.2]U1,
marked also with a rectangle in the main plot. The left inset
shows the same region as the right one, but with the exchange
field neglected.

Δεex can have different sign for different multiplets, thus,
states possessing different sign of 〈Sz〉 may become the
ground state.

4.3 The I-V characteristics

The exchange field influences not only the static prop-
erties, such as the magnetization of DQD presented in
Figure 6. As claimed earlier, also the conductance exhibits
its signatures. To present this, the current through the sys-
tem was calculated using master equation method [21,22],
with tunneling rates given by the Fermi golden rule. More-
over, in this subsection we use two leads, with Γrσ =
(1 + σp)Γ/2, because the transformation given by equa-
tions (8) and (9) does not decouple f operators outside
the equilibrium. The results, presented in Figure 7, are
valid only in the sequential tunneling regime, since any
higher terms are neglected. However, the influence of the
exchange field on the I-V characteristics near the reso-
nance is clearly visible.

In general, one can see large regions of approximately
constant current. Each such region corresponds to a fixed
set of many-body DQD states, whose energy differences
fit in the energy window of a voltage bias. The whole plot
resembles a bit a structure characteristic of single inter-
acting QD. However, the inter-dot interaction t causes the
edges of fixed-current regions to band, and the increased
number of states reflects itself in the splitting of just a
few regions present in the single-QD case. The fact that
the plot is not symmetric with respect to ε1 = −U1/2
comes from the lack of particle-hole symmetry in QD2,
since ε2 = 0 �= −U2/2 was assumed. All these features,
visible in Figure 7, are valid also when one neglects the
existence of Δεex.

The effects of Δεex �= 0 are explicitly shown in the
insets. The right one shows the enlargement of the region
−0.3U1 < ε1 < 0, |V | < 0.2U1/e. The left one – the
results obtained in the same region by neglecting Δεex.
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Note, that according to Figure 5, in this region the ground
state becomes magnetic due to the exchange field. The
result is clearly visible: the lack of degeneracy leads to the
splitting of the X-like structure, which resembles the effect
of external magnetic field (here magnetic field is absent).

4.4 Limitations of the method

The considerations in this paper rely on the perturba-
tive expansion in Γ . For transport properties, this is very
strong assumption, which limits the range of validity of the
results obtained in Section 4.3. One can expect the best
accuracy in the sequential tunneling regime, worse in the
co-tunneling regime, and completely false in the Kondo
regime. However, the inter-dot interaction t was treated
exactly, so the interference effects between different con-
duction paths, containing arbitrary number of hops of an
electron between the dots are properly taken into account.

On the other hand, the renormalization of levels caused
by the interaction with magnetically polarized bath ob-
tained with second order perturbation theory proved to
be in a good agreement with more sophisticated methods,
in particular with numerical renormalization group calcu-
lations, for different systems and also in the strong cou-
pling regime [7,14]. For this reason, one can hope that they
can be quite generally valid in the linear response regime.
Nevertheless, higher order terms may play an important
role for particle-hole symmetric point, where Δεex = 0.
For QDs possessing large-spin ground state, they give rise
to formation of the effective magnetic quadrupolar field,
not vanishing at the symmetric point [23].

Moreover, an important note can be done, if one con-
siders the case U2 = 0. Then, one can propose a defi-
nition of the exchange field induced on QD2 by both F
and QD1 (as opposed to the exchange field for molecular
states defined earlier). This is done as follows. Since the
only nonquadratic terms in the Hamiltonian are related to
the Coulomb interactions, the subsystem containing F and
QD1 can now be diagonalized exactly. The whole model
is then equivalent to the Anderson impurity (correspond-
ing to QD2) coupled to the lead possessing Lorentzian
density of states (corresponding to the diagonalized sub-
system containing F and QD1) [24]. Then, treating t per-
turbatively to the second order and defining ΔεexQD2 to be
the difference between the shifts of different spins for the
singly occupied QD2, we obtain [14]

ΔεexQD2 =
∑

σ

σ
t2

2
[
LU2+δ̃

(Γσ) − L−δ̃(Γσ)
]

−
∑

σ

σ
t2

π
arctan

(
ε−1

Γσ

)

× [
LU2+δ̃(Γσ) + L−δ̃(Γσ)

]

−
∑

σ

σ
t2

2π
LΓσ

(
U2 + δ̃

)
log

(ε2 + U2)2

ε21 + Γ 2
σ

+
∑

σ

σ
t2

2π
LΓσ

(
−δ̃

)
log

ε22
ε21 + Γ 2

σ

, (17)
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Fig. 8. The dependence of the exchange field on QD2 level po-
sition calculated from equation (14) for the state |e13〉 (q = +1,
Sz = +1/2, solid line), and from equation (17) (dashed line),
for U1 = 0, U2 = W/2, t = Γ = W/100, p = 0.4, and
(a) ε1 = −U2, (b) ε1 = 0.

where Ly(x) = y/(x2 + y2) and δ̃ ≡ ε2 − ε1 = 2δ − U2/2.
Interestingly, ΔεexQD2 does not vanish for U2 = 0. This
peculiarity changes if equation (17) is expanded in the
power series in Γ . Then, zeroth order vanishes, and in the
first order one obtains the result, in which U2 = 0 implies
ΔεexQD2 = 0.

The question if the result (17) can be reasonably com-
pared with equation (14) is not trivial. First of all, while in
equation (14) we treated t exactly and Γ perturbatively,
it was the other way around in equation (17). Thus, if
these two are to be correct simultaneously, both t and Γ
must be small, when compared to U2. This is, however,
not the whole story yet. The even bigger problem is that
equation (17) corresponds to the situation, in which QD2
is singly occupied, while the subsystem containing F and
QD1 is in its ground state. The occupancy of QD1 in this
ground state is not well defined for the general case. Thus,
the reasonable comparison can be made only in the special
cases. One of them is the case of large |ε1|. Indeed, QD1 is
practically doubly occupied for ε1 � −Γ and practically
unoccupied for ε1 � Γ . The comparison of Δεex obtained
in this case from equations (14) and (17) is presented in
Figure 8a. The same comparison for ε1 = 0 does not make
sense, which is illustrated in Figure 8b. This demonstrates,
that the validity of the results obtained in this paper is
limited to the case of Γ weak enough for DQD occupation
to be determined fromHDQD eigenenergies only. In partic-
ular, the spin-dependent Fano-like interference occurring
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at extremely low temperatures is better described with
the aid of formula (17) then by equation (14) [14].

5 Conclusions

In the present article we have defined and calculated the
exchange field induced in the molecular states of a double
quantum dot by the coupling to the ferromagnetic leads
in the T-shaped configuration. It was shown that the ex-
change field is different in different molecular states, so it
is not acting exactly like a real magnetic field. However,
it acts very similarly, reversing the sign of the shift upon
spin-reversal in the considered state.

The results for small t agree with well-known for-
mula (16). However, the dependence on t for stronger
inter-dot hopping is complex, and perturbative treatment
of t would have to be performed to very high order to
give results consistent with equation (14), in particular
for the parameters used in Figure 3. Because changing t
can change sign and magnitude of Δεex, it can be used to
tune the exchange field as well as ε1 or ε2.

The validity of equation (14) is limited by the validity
of perturbative treatment of Γ and by the assumption,
that the molecular states are relevant for the physical sit-
uation of the interest. For the case of strong Γ and weak t,
this is not the case.

The author thanks I. Weymann for fruitful discussions and
P. Baláž for critical reading of the manuscript. Research was
supported by the National Science Center in Poland through
Project No. DEC-2013/10/E/ST3/00213.
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