Skip to main content
Log in

Valley properties of doped graphene in a magnetic field

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The aim of this work is to describe the electronic properties of graphene in a constant magnetic field in the long wavelength approximation with random binary disorder, by solving the Soven equation self-consistently. Density of state contributions for different valleys in each sublattice sites are obtained for different values of magnetic field strength showing remarkable differences between K and K valleys. A band gap is obtained by an asymmetric on-site impurity concentration and the graphene electrons acquire an anomalous magnetic moment, which is opposite in different valleys, which depend highly in the interplay between the impurity band, the band edges and the broadening of the Landau levels. In turn, magnetization as a function of B for different on-site random impurities is computed showing that by decreasing the on-site impurity energy values, maximum magnetization is shifted towards higher values of B which can be used to create and manipulate polarized valley currents. Finally, conductivity and local vertex function are obtained as a function of energy showing that scattering contributions from A and B sublattices differ significantly. Effective medium local two-irreducible vertex is computed showing that scattering from sublattices A and B do not contribute equally, which can be related to weak anti-localization. From these results, it could be possible to explore how the valley pseudospin can be used to create polarized currents by populating asymmetrically the sublattice sites, where the population can be tuned with the applied magnetic field strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  3. Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  4. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  5. M.O. Goerbig, Rev. Mod. Phys. 83, 4 (2011)

    Article  Google Scholar 

  6. J. McClure, Phys. Rev. 104, 666 (1956)

    Article  ADS  Google Scholar 

  7. S. Kuru, J. Negro, L.M. Nieto, J. Phys.: Condens. Matter 21, 455305 (2009)

    ADS  Google Scholar 

  8. Y. Zheng, T. Ando, Phys. Rev. B 65, 245420 (2002)

    Article  ADS  Google Scholar 

  9. A. Rycerz, J. TworzydÃlo, C.W.J. Beenakker, Nat. Phys. 3, 172 (2007)

    Article  Google Scholar 

  10. P. Recher, B. Trauzettel, A. Rycerz, Y.M. Blanter, C.W.J. Beenakker, A.F. Morpurgo, Phys. Rev. B 76, 235404 (2007)

    Article  ADS  Google Scholar 

  11. D. Xiao, W. Yao, Q. Niu, Phys. Rev. Lett. 99, 236809 (2007)

    Article  ADS  Google Scholar 

  12. D.V. Bulaev, B. Trauzettel, D. Loss, Phys. Rev. B 77, 235301 (2008)

    Article  ADS  Google Scholar 

  13. L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29 (1950)

    Article  ADS  MATH  Google Scholar 

  14. K. Sasaki, R. Sato, Prog. Theor. Phys. Suppl. 176, 253 (2008)

    Article  ADS  MATH  Google Scholar 

  15. M. Taillerfumier, V.K. Dugaev, B. Canals, C. Lacroix, P. Bruno, Phys. Rev. B 84, 085427 (2011)

    Article  ADS  Google Scholar 

  16. P.M. Ostrovsky, I.V. Gornyi, A.D. Mirlin, Eur. Phys. J. Special Topics 148, 63 (2007)

    Article  ADS  Google Scholar 

  17. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, L.A. Ponomarenko, D. Jiang, A.K. Geim, Phys. Rev. Lett. 97, 016801 (2006)

    Article  ADS  Google Scholar 

  18. E. McCann, V.I. Fal’ko, Phys. Rev. B 71, 085415 (2005)

    Article  ADS  Google Scholar 

  19. P. Esquinazi, D. Spemann, R. Hhne, A. Setzer, K.-H. Han, T. Butz, Phys. Rev. Lett. 91, 227201 (2003)

    Article  ADS  Google Scholar 

  20. F. Schedin, A.K. Geim, S.V. Morozov, D. Jiang, E.H. Hill, P. Blake, K.S. Novoselov, Nat. Mater. 6, 652 (2007)

    Article  ADS  Google Scholar 

  21. M.C. Chang, Q. Niu, Phys. Rev. B 53, 7010 (1996)

    Article  ADS  Google Scholar 

  22. D. Xiao, J. Shi, Q. Niu, Phys. Rev. Lett. 95, 137204 (2005)

    Article  ADS  Google Scholar 

  23. T. Thonhauser, D. Ceresoli, D. Vanderbilt, R. Resta, Phys. Rev. Lett. 95, 137205 (2005)

    Article  ADS  Google Scholar 

  24. D. Ceresoli, T. Thonhauser, D. Vanderbilt, R. Resta, Phys. Rev. B 74, 024408 (2006)

    Article  ADS  Google Scholar 

  25. D. Xiao, M.C. Chang, Q. Niu, Rev. Mod. Phys. 82, 1959 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. P. Soven, Phys. Rev. 156, 839 (1967)

    Article  ADS  Google Scholar 

  27. P. Soven, Phys. Rev. 178, 1136 (1969)

    Article  ADS  Google Scholar 

  28. B. Velicky, S. Kirkpatrick, H. Ehrenreich, Phys. Rev. 175, 747 (1968)

    Article  ADS  Google Scholar 

  29. M. Tsukada, J. Phys. Soc. Jpn 32, 1475 (1972)

    Article  ADS  Google Scholar 

  30. A.R. Bishop, A. Mookerjee, J. Phys. C 7, 2165 (1973)

    Article  ADS  Google Scholar 

  31. F. Ducastelle, J. Phys. C 8, 3297 (1975)

    Article  ADS  Google Scholar 

  32. A. Gonis, J.W. Garland, Phys. Rev. B 16, 2424 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  33. C.W. Myles, J.D. Dow, Phys. Rev. B 19, 4939 (1979)

    Article  ADS  Google Scholar 

  34. Y.-T. Shen, C.W. Myles, Phys. Rev. B 30, 3283 (1984)

    Article  ADS  Google Scholar 

  35. A. Gonis, Green Functions for Ordered and Disordered Systems, in Studies in Mathematical Physics (North Holland, Amsterdam, 1992), Vol. 4

  36. M. Jarrell, H.R. Krishnamurthy, Phys. Rev. B 63, 125102 (2001)

    Article  ADS  Google Scholar 

  37. R.J. Elliot, J.A. Krumhansl, P.L. Leath, Rev. Mod. Phys. 46, 3 (1974)

    Google Scholar 

  38. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  39. J.S. Ardenghi, P. Bechthold, P. Jasen, E. Gonzalez, O. Nagel, Physica B 427, 97 (2013)

    Article  ADS  Google Scholar 

  40. J.S. Ardenghi, P. Bechthold, E. Gonzalez, P. Jasen, A. Juan, Physica B 433, 28 (2014)

    Article  ADS  Google Scholar 

  41. N.M. Peres, F. Guinea, H. Castro Neto, Phys. Rev. B 73, 125411 (2006)

    Article  ADS  Google Scholar 

  42. I.S. Gradshtein, I.M. Ryzhik, in Table of Integrals, Series, and Products, edited by A. Jeffrey, D. Zwillinger, 7th edn. (Academic Press, New York, 2007)

  43. T.M. Rusin, W. Zawadzki, J. Phys. A 44, 105201 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  44. Y. Ominato, M. Koshino, Solid State Commun. 51, 175 (2013)

    Google Scholar 

  45. Y.V. Skrypnyk, V.M. Loktev, Phys. Rev. B 82, 085436 (2010)

    Article  ADS  Google Scholar 

  46. G. Baym, L.P. Kadanoff, Phys. Rev. 124, 287 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. V. Janis, J. Kolorenc, Phys. Stat. Sol. B 241, 2032 (2004)

    Article  ADS  Google Scholar 

  48. V. Janis, V. Pokorny, Phys. Rev. B 90, 045143 (2014)

    Article  ADS  Google Scholar 

  49. V. Janis, J. Kolorenc, V. Spicka, Eur. Phys. J. B 35, 77 (2003)

    Article  ADS  Google Scholar 

  50. B.L. Altshuler, D. Khmel’nitzkii, A.I. Larkin, P.A. Lee, Phys. Rev. B 22, 5142 (1980)

    Article  ADS  Google Scholar 

  51. A.I. Larkin, D.E. Khmel’nitskii, Usp. Fiz. Nauk 136, 536 (1982) [Sov. Phys. Usp. 25, 185 (1982)]

    Article  Google Scholar 

  52. G. Bergman, Phys. Rep. 107, 1 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  53. D.E. Khmel’nitskii, Physica B 126, 235 (1984)

    Article  Google Scholar 

  54. H. Suzuura, T. Ando, Phys. Rev. Lett. 89, 266603 (2002)

    Article  ADS  Google Scholar 

  55. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  56. Y.B. Zhang, J.P. Small, M.E.S. Amori, P. Kim, Phys. Rev. Lett. 94, 176803 (2005)

    Article  ADS  Google Scholar 

  57. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angew. Chem. 48, 7752 (2009)

    Article  Google Scholar 

  58. D. Wei, Y. Liu, Adv. Mater. 22, 3225 (2010)

    Article  Google Scholar 

  59. H. Liu, Y. Liu, D. Zhua, J. Mater. Chem. 21, 3335 (2011)

    Article  Google Scholar 

  60. T.O. Wehling, K.S. Novoselov, S.V. Morozov, E.E. Vdovin, M.I. Katsnelson, A.K. Geim, A.I. Lichtenstein, Nano Lett. 8, 1 (2008)

    Article  Google Scholar 

  61. W. Zhou, M.D. Kapetanakis, M.P. Prange, S.T. Pantelides, Phys. Rev. Lett. 109, 206803 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Sebastian Ardenghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardenghi, J.S., Bechthold, P., Gonzalez, E. et al. Valley properties of doped graphene in a magnetic field. Eur. Phys. J. B 88, 47 (2015). https://doi.org/10.1140/epjb/e2015-50747-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-50747-8

Keywords

Navigation