Skip to main content
Log in

Collective oscillations in spatially modulated exciton-polariton condensate arrays

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study collective dynamics of interacting centers of exciton-polariton condensation in presence of spatial inhomogeneity, as modeled by diatomic active oscillator lattices. The mode formalism is developed and employed to derive existence and stability criteria of plane wave solutions. It is demonstrated that k 0 = 0 wave number mode with the binary elementary cell on a diatomic lattice possesses superior existence and stability properties. Decreasing net on-site losses (balance of dissipation and pumping) or conservative nonlinearity favors multistability of modes, while increasing frequency mismatch between adjacent oscillators detriments it. On the other hand, spatial inhomogeneity may recover stability of modes at high nonlinearities. Entering the region where all single-mode solutions are unstable we discover subsequent transitions between localized quasiperiodic, chaotic and global chaotic dynamics in the mode space, as nonlinearity increases. Importantly, the last transition evokes the loss of synchronization. These effects may determine lasing dynamics of interacting exciton-polariton condensation centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Kasprzak et al., Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  2. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316, 1007 (2007)

    Article  ADS  Google Scholar 

  3. J. Keeling, N. Berloff, Contemp. Phys. 52, 131 (2011)

    Article  ADS  Google Scholar 

  4. I. Carusotto, C. Ciuti, Rev. Mod. Phys. 85, 299 (2013)

    Article  ADS  Google Scholar 

  5. C.W. Lai et al., Nature 450, 526 (2007)

    Article  ADS  Google Scholar 

  6. M. Wouters, Phys. Rev. B 77, 121302 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. P.R. Eastham, Phys. Rev. B 78, 035319 (2008)

    Article  ADS  Google Scholar 

  8. I.L. Aleiner, B.L. Altshuler, Y.G. Rubo, Phys. Rev. B 85, 121301 (2012)

    Article  ADS  Google Scholar 

  9. M. Ivanchenko, G. Osipov, V. Shalfeev, J. Kurths, Physica D 189, 8 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. A.P. Kuznetsov, N.V. Stankevich, L.V. Turukina, Physica D 238, 1203 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. V. Astakhov, S. Koblyanskii, A. Shabunin, T. Kapitaniak, Chaos 21, 023129 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  12. Y.P. Emelianova, A.P. Kuznetsov, I.R. Sataev, L.V. Turukina, Physica D 244, 36 (2013)

    Article  ADS  MATH  Google Scholar 

  13. I.S. Aranson, A.V. Gaponov-Grekhov, M.I. Rabinovich, J. Exp. Theor. Phys. 62, 52 (1985)

    Google Scholar 

  14. J.F. Ravoux, S. Le Dizès, P. Le Gal, Phys. Rev. E 61, 390 (2000)

    Article  ADS  Google Scholar 

  15. A. Mohamadou, T. Kofane, Phys. Rev. E 73, 046607 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Wamba, A. Mohamadou, T. Kofane, Phys. Rev. E 77, 046216 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Ivanchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhomirov, A., Kanakov, O., Altshuler, B. et al. Collective oscillations in spatially modulated exciton-polariton condensate arrays. Eur. Phys. J. B 88, 7 (2015). https://doi.org/10.1140/epjb/e2014-50838-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50838-0

Keywords

Navigation