Skip to main content
Log in

Theoretical study of carbon double cones

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have applied first-principles calculations, based on the density functional theory, to investigate the electronic structure of pure and nitrogen (N) and (B) doped carbon (C) cones and double cones in a hourglass shape. The relative number of s p 3 bonds, together with apex rearrangement and growth environment, determine the energetic stability of these structures. The electronic structure calculations revealed that the s p 2/s p 3 ratio defines the gap size for the non doped double cones. For the doped systems it was observed a gap reduction for one specific configuration and that this reduction is associated with the defects interaction. Densities of states (DOS) changes in response to the application of external electric fields were observed, with some double cones becoming metallic. Permanent electric dipole moments, equal to –1.2 eÅ and –2.3 eÅ, were calculated for the B and N doped double cones. The interaction of this electric dipole with the electric field application can be used to tune the electronic properties of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. N. Hamada, S.I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Article  ADS  Google Scholar 

  3. A. Rubio, J. Corkill, M.L. Cohen, Phys. Rev. B 49, 5081 (1994)

    Article  ADS  Google Scholar 

  4. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5, 26 (2011)

    Article  Google Scholar 

  5. C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath. ChemPhysChem 2, 78 (2001)

    Article  Google Scholar 

  6. V.N. Popov, Mat. Sci. Eng. Rep. 43, 61 (2004)

    Article  Google Scholar 

  7. K. Balasubramanian, M. Burghard, Small 1, 180 (2005)

    Article  Google Scholar 

  8. H.W. Kroto, Nature 329, 529 (1997)

    Article  ADS  Google Scholar 

  9. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  10. S. Azevedo, M.S.C. Mazzoni, H. Chacham, R.W. Nunes, Appl. Phys. Lett. 82, 2323 (2003)

    Article  ADS  Google Scholar 

  11. S. Ijima, T. Ichibashi, Y. Ando, Nature 356, 776 (1992)

    Article  ADS  Google Scholar 

  12. M. Ge, K. Sattler, Appl. Phys. Lett. 64, 710 (1994)

    Article  ADS  Google Scholar 

  13. M. Ge, K. Sattler, Chem. Phys. Lett. 220, 192 (1994)

    Article  ADS  Google Scholar 

  14. S. Azevedo, Phys. Lett. A 337, 431 (2005)

    Article  ADS  Google Scholar 

  15. A. Cortijo, M.A.Z. Vozmediano, Nucl. Phys. B 763, 293 (2007)

    Article  ADS  MATH  Google Scholar 

  16. C. Furtado, F. Moraes, A.M. de M. Carvalho, Phys. Lett. A 372, 5368 (2008)

    Article  ADS  MATH  Google Scholar 

  17. S.P. Jordan, V.H. Crespi, Phys. Rev. Lett. 93, 255504 (2004)

    Article  ADS  Google Scholar 

  18. D. Pedreira, S. Azevedo, M. Machado, Phys. Rev. B 78, 085427 (2008)

    Article  ADS  Google Scholar 

  19. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  20. D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 453 (1997)

    Article  Google Scholar 

  21. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, I.B. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)

    Article  ADS  Google Scholar 

  22. T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, D.C. Langreth, Phys. Rev. B 76, 125112 (2007)

    Article  ADS  Google Scholar 

  23. G. Román Pérez, J.M. Soler, Phys. Rev. Lett. 103, 096102 (2009)

    Article  ADS  Google Scholar 

  24. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  25. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  27. S. Azevedo, M.S.C. Mazzoni, R.W. Nunes, H. Chacham, Phys. Rev. B 70, 205412 (2004)

    Article  ADS  Google Scholar 

  28. S. Azevedo, J.R. Kaschny, Eur. Phys. J. B 86, 395 (2013)

    Article  ADS  Google Scholar 

  29. J.P. Guedes, S. Azevedo, M. Machado, Eur. Phys. J. B 80, 135 (2011)

    Article  ADS  Google Scholar 

  30. S. Azevedo, Phys. Lett. A 325, 283 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  31. G. Zhang, W. Dan, B. Gu, Appl. Phys. Lett. 80, 2589 (2002)

    Article  ADS  Google Scholar 

  32. K. Kowalski, J. Rembielinski, Ann. Phys. 329, 146 (2012)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Azevedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, M.D., Azevedo, S., Moraes, F. et al. Theoretical study of carbon double cones. Eur. Phys. J. B 88, 10 (2015). https://doi.org/10.1140/epjb/e2014-50618-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50618-x

Keywords

Navigation