Skip to main content
Log in

Effects of a single defect in composite gate insulators of carbon nanotube transistors

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The current through a carbon nanotube field-effect transistor (CNFET) with cylindrical gate electrode is calculated using the nonequilibrium Greens function method in a tight-binding approximation. The obtained result is in good agreement with the experimental data. The theoretical approach is used to calculate the amplitude of the random-telegraph-signal (RTS) noise due to a single defect in the gate oxide of a long channel p-type CNFET. Considering a composite structure of gate insulators, which contains an inner insulator with a large dielectric constant (ϵ > 3.9) and an outer insulator with a dielectric constant of 3.9 (as for SiO2), the dependence of the RTS noise amplitude on the structure of composite gate insulators is investigated. It is found that the RTS amplitude increases apparently with the decreasing thickness of the inner gate insulator. If the inner insulator is too thin, even though its dielectric constant is as large as 80, the amplitude of the RTS noise caused by the charge of Q = +1e may amount to around 80% in the turn-on region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68, 631 (1992)

    Article  ADS  Google Scholar 

  2. S.J. Wind, J. Appenzeller, R. Martel, V. Derycke, Ph. Avouris, Appl. Phys. Lett. 80, 3817 (2002)

    Article  ADS  Google Scholar 

  3. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Nature 424, 654 (2003)

    Article  ADS  Google Scholar 

  4. V. Derycke et al., Nano Lett. 1, 453 (2001)

    Article  ADS  Google Scholar 

  5. Z. Chen et al., Science 311, 1735 (2006)

    Article  Google Scholar 

  6. A.D. Franklin, Z. Chen, Nat. Nanotechnol. 5, 858 (2010)

    Article  ADS  Google Scholar 

  7. G.J. Dienes, J. Appl. Phys. 24, 666 (1953)

    Article  ADS  Google Scholar 

  8. E. Dartyge et al., Phys. Rev. B 23, 5213 (1981)

    Article  ADS  Google Scholar 

  9. A. Gusarov et al., Nucl. Instrum. Methods Phys. Res. B 187, 79 (2002)

    Article  ADS  Google Scholar 

  10. L. Luneville, D. Simeone, D. Gosset, Nucl. Instrum. Methods Phys. Res. B 250, 71 (2006)

    Article  ADS  Google Scholar 

  11. H.-H. Jin, J. Kwon, C. Shin, Nucl. Instrum. Methods Phys. Res. B 319, 24 (2014)

    Article  ADS  Google Scholar 

  12. B. Narayanan et al., J. Appl. Phys. 113, 033504 (2013)

    Article  ADS  Google Scholar 

  13. J. Chan, B. Burke, K. Evans, K.A. Williams, S. Vasudevan, M. Liu, J. Campbell, A.W. Ghosh, Phys. Rev. B 80, 033402 (2009)

    Article  ADS  Google Scholar 

  14. F. Liu, K.L. Wang, C. Li, C. Zhou, IEEE Trans. Nanotechnol. 5, 441 (2006)

    Article  ADS  Google Scholar 

  15. K.S. Rall, W.J. Skocpol, L.D. Jackel, R.E. Howard, L.A. Fetter, R.W. Epworth, D.M. Tennant, Phys. Rev. Lett. 52, 228 (1984)

    Article  ADS  Google Scholar 

  16. M.J. Kirton, M.J. Uren, S. Collins, M. Schulz, A. Karmann, K. Scheffer, Semicond. Sci. Technol. 4, 1116 (1989)

    Article  ADS  Google Scholar 

  17. M.J. Uren, D.J. Day, M.J. Kirton, Appl. Phys. Lett. 47, 1195 (1985)

    Article  ADS  Google Scholar 

  18. F. Liu, M. Bao, H. Kim, K.L. Wang, C. Li, X. Liu, C. Zhou, Appl. Phys. Lett. 86, 163102 (2005)

    Article  ADS  Google Scholar 

  19. F. Liu, K.L. Wang, Nano Lett. 8, 147 (2008)

    Article  ADS  Google Scholar 

  20. J.-W. Lee, B.H. Lee, H. Shin, J.-H. Lee, IEEE Trans. Electron Devices 57, 913 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Heinze, N.-P. Wang, J. Tersoff, Phys. Rev. Lett. 95, 186802 (2005)

    Article  ADS  Google Scholar 

  22. N. Neophytou, D. Kienle, E. Polozzi, M.P. Anantram, Appl. Phys. Lett. 88, 242106 (2006)

    Article  ADS  Google Scholar 

  23. N.-P. Wang, S. Heinze, J. Tersoff, Nano Lett. 7, 910 (2007)

    Article  ADS  Google Scholar 

  24. N.-P. Wang, X.-J. Xu, Europhys. Lett. 100, 47009 (2012)

    Article  ADS  Google Scholar 

  25. N.-P. Wang, X.-J. Xu, J. Appl. Phys. 114, 073701 (2013)

    Article  ADS  Google Scholar 

  26. P. Dutta, P.M. Horn, Rev. Mod. Phys. 53, 497 (1981)

    Article  ADS  Google Scholar 

  27. M.B. Weissman, Rev. Mod. Phys. 60, 537 (1988)

    Article  ADS  Google Scholar 

  28. P.G. Collins, M.S. Fuhrer, A. Zettl, Appl. Phys. Lett. 76, 894 (2000)

    Article  ADS  Google Scholar 

  29. Y.-M. Lin et al., Nano Lett. 6, 930 (2006)

    Article  ADS  Google Scholar 

  30. M. Ishigami et al., Appl. Phys. Lett. 88, 203116 (2006)

    Article  ADS  Google Scholar 

  31. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    Article  ADS  Google Scholar 

  32. E.P. Gusev, V. Narayana, M.M. Frank, IBM J. Res. Dev. 50, 387 (2006)

    Article  Google Scholar 

  33. W.D. Brown, W.W. Grannemann, Solid State Electron. 21, 837 (1978)

    Article  ADS  Google Scholar 

  34. N. Rausch, E.P. Burte, Engineering 19, 725 (1992)

    Google Scholar 

  35. N. Rausch, E.P. Burte, J. Electrochem. Soc. 140, 145 (1993)

    Article  Google Scholar 

  36. T. Fuyuki, H. Matsunami, Jpn J. Appl. Phys. 25, 1288 (1986)

    Article  ADS  Google Scholar 

  37. J. Pascual, J. Camassel, H. Mathieu, Phys. Rev. B 18, 5606 (1978)

    Article  ADS  Google Scholar 

  38. S.A. Campbell, H.-S. Kim, D.C. Gilmer, B. He, T. Ma, W.L. Gladfelter, IBM J. Res. Dev. 43, 383 (1999)

    Article  Google Scholar 

  39. H.-S. Kim, S.A. Campbell, D.C. Gilmer, IEEE Electron Device Lett. 18, 465 (1997)

    Article  ADS  Google Scholar 

  40. J. Lu, Y. Kuo, Appl. Phys. Lett. 87, 232906 (2005)

    Article  ADS  Google Scholar 

  41. N.G. Cho, D.H. Kim, H.-G. Kim, J.-M. Hong, I.-D. Kim, Thin Solid Films 518, 2843 (2010)

    Article  ADS  Google Scholar 

  42. C. Choi, R. Choi, Thin Solid Films 521, 42 (2012)

    Article  ADS  Google Scholar 

  43. F. Léonard, J. Tersoff, Phys. Rev. Lett. 88, 258302 (2002)

    Article  ADS  Google Scholar 

  44. J. Appenzeller, Y.-M. Lin, J. Knoch, Ph. Avouris, Phys. Rev. Lett. 93, 196805 (2004)

    Article  ADS  Google Scholar 

  45. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

  46. J. Guo, S. Datta, M. Lundstrom, M.P. Anantram, Int. J. Multiscale Comput. Eng. 2, 257 (2004)

    Article  Google Scholar 

  47. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  48. A.R. Rocha, S. Sanvito, Phys. Rev. B 70, 094406 (2004)

    Article  ADS  Google Scholar 

  49. M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31, 6207 (1985)

    Article  ADS  Google Scholar 

  50. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  51. A. Svizhenko, M.P. Anantram, T.R. Govindan, B. Biegel, J. Appl. Phys. 91, 2343 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neng-Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, WJ., Wang, NP. Effects of a single defect in composite gate insulators of carbon nanotube transistors. Eur. Phys. J. B 87, 233 (2014). https://doi.org/10.1140/epjb/e2014-50443-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50443-3

Keywords

Navigation