Skip to main content
Log in

Simulation of the Brownian motion of the domain wall in a nonlinear force field of nanowires

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The paper proposes a computer simulation method of the thermo-fluctuational motion of domain walls in ferromagnetic polycrystalline nanowires, taking into account a non-linear force field of magnetic inhomogeneities. The method makes use of stochastic Langevin function. Into the Langevin equation we added a member describing random force pattern of domain wall fixation on magnetic inhomogeneities. A variety of statistic characteristics of domain wall propagation process have been obtained: magnetization jumps distribution, activation energies distribution, distribution of magnetization switch waiting times and distribution of magnetization jump times. Paper shows that it is incorrect to apply Einstein-Smoluchowski equation for particle’s thermo-fluctuational motion in non-linear force field pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Henry, A. Iovan, J.-M. George, L. Piraux, Phys. Rev. B 66, 184430 (2002)

    Article  ADS  Google Scholar 

  2. A.G. Isavnin, Phys. Solid State 43, 1216 (2001)

    Article  Google Scholar 

  3. A.F. Popkov, Phys. Solid State 44, 135 (2002)

    Article  ADS  Google Scholar 

  4. V.V. Makhro, Phys. Solid State 40, 1855 (1998)

    Article  Google Scholar 

  5. V.V. Dobrovitskiy, A.K. Zvezdin, J. Exp. Theor. Phys. 109, 1420 (1996)

    Google Scholar 

  6. E.K. Sadykov, A.G. Isavnin, A.B. Boldenkov, Phys. Solid State 40, 516 (1998)

    Article  Google Scholar 

  7. M. Bahiana, F.S. Amaral, S. Allende, D. Altbir, Phys. Rev. B 74, 174412 (2006)

    Article  ADS  Google Scholar 

  8. A.A. Ivanov, V.A. Orlov, N.N. Podolsky, Solid State Phenomena 168-169, 230 (2011)

    Article  Google Scholar 

  9. A.A. Ivanov, V.A. Orlov, M.V. Erementchouk, N.N. Podolsky, Eur. Phys. J. B 83, 83 (2011)

    Article  ADS  Google Scholar 

  10. A.A. Ivanov, V.A. Orlov, Phys. Metals Metallograph. 111, 580 (2011)

    Article  Google Scholar 

  11. A.A. Ivanov, V.A. Orlov, Phys. Solid State 53, 1266 (2011)

    Google Scholar 

  12. A.A. Ivanov, V.A. Orlov, Phys. Solid State 53, 2441 (2011)

    Article  ADS  Google Scholar 

  13. F. Marchesoni, Phys. Lett. A 115, 29 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  14. F. Marchesoni, C.R. Willis, Phys. Rev. A 36, 4559 (1987)

    Article  ADS  Google Scholar 

  15. F. Marchesoni, C.R. Willis, Phys. Rev. A 38, 2627 (1988)

    Article  ADS  Google Scholar 

  16. F. Marchesoni, Europhys. Lett. 8, 83 (1989)

    Article  ADS  Google Scholar 

  17. S.A. Guz, J. Exp. Theor. Phys. 95, 166 (2002)

    Article  ADS  Google Scholar 

  18. A.A. Dubkov, P. Hänggi, I. Goychuk, J. Stat. Mech. 2009, P010034 (2009)

    Google Scholar 

  19. F. Marchesoni, Materials 6, 3598 (2013)

    Article  ADS  Google Scholar 

  20. S.A. Guz, R. Mannella, M.V. Sviridov, Phys. Lett. A 317, 233 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. V. Feller, in Introduction into the probability theory and its applications (Mir, Moscow, 1963), Vol. 1, p. 512 (in Russian)

  22. V.I. Tikhonov, in Runs of the random processes (Nauka, Moscow, 1970), p. 392 (in Russian)

  23. W. Doring, Z. Naturforsch. 3a, 373 (1948)

    ADS  Google Scholar 

  24. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. S. Glasstone, K.J. Laider, H. Eiring, in The Theory of Rate Processes (McGraw-Hill, N.Y., 1941), p. 611

  26. L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, S. Santucci, Phys. Rev. Lett. 62, 349 (1989)

    Article  ADS  Google Scholar 

  27. F. Marchesoni, Phys. Rev. B 32, 1827 (1985)

    Article  ADS  Google Scholar 

  28. A.A. Migdal, Sov. Phys. Usp. 29, 389 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  29. W.T. Coffey, Yu.P. Kalmykov, J.T. Waldron, in The Langevin Equation, With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, 2nd edn. (World Scientific Series in Contemporary Chemical Physics, 2004), Vol. 14

  30. F. Reif, in Fundamentals of Statistical and Thermal Physics (McGraw Hill, New York, 1965), Sect. 15.5

  31. O.B. Zaslavskii, Phys. Rev. B. 42, 992 (1990)

    Article  ADS  Google Scholar 

  32. E. Saitoh, H. Miyajima, T. Yamaoka, G. Tatara, Nature 432, 203 (2004)

    Article  ADS  Google Scholar 

  33. M. Borromeo, F. Marchesoni, Phys. Rev. Lett. 84, 203 (2000)

    Article  ADS  Google Scholar 

  34. M. Borromeo, F. Marchesoni, Phys. Rev. Lett. 99, 150605 (2007)

    Article  ADS  Google Scholar 

  35. L. Machura, M. Kostur, P. Talkner, J. Luczka, F. Marchesoni, P. Hänggi, Phys. Rev. E 70, 061105 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly A. Orlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A., Orlov, V. Simulation of the Brownian motion of the domain wall in a nonlinear force field of nanowires. Eur. Phys. J. B 88, 2 (2015). https://doi.org/10.1140/epjb/e2014-50334-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50334-7

Keywords

Navigation