Skip to main content
Log in

Solving the undirected feedback vertex set problem by local search

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

An undirected graph consists of a set of vertices and a set of undirected edges between vertices. Such a graph may contain an abundant number of cycles, in which case a feedback vertex set (FVS) is a set of vertices intersecting with each of these cycles. Constructing a FVS of cardinality approaching the global minimum value is an optimization problem in the nondeterministic polynomial-complete complexity class, and therefore it might be extremely difficult for some large graph instances. In this paper we develop a simulated annealing local search algorithm for the undirected FVS problem by adapting the heuristic procedure of Galinier et al. [P. Galinier, E. Lemamou, M.W. Bouzidi, J. Heuristics 19, 797 (2013)], which worked for the directed FVS problem. By defining an order for the vertices outside the FVS, we replace the global cycle constraints by a set of local vertex constraints on this order. Under these local constraints the cardinality of the focal FVS is then gradually reduced by the simulated annealing dynamical process. We test this heuristic algorithm on large instances of Erdös-Rényi random graph and regular random graph, and find that this algorithm is comparable in performance to the belief propagation-guided decimation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979)

  2. P. Festa, P.M. Pardalos, M.G.C. Resende, in Handbook of combinatorial optimization, edited by D.Z. Du, P.M. Pardalos (Springer, Berlin, 1999), pp. 209–258

  3. R.M. Karp, in Complexity of Computer Computations, edited by E. Miller, J.W. Thatcher, J.D. Bohlinger (Plenum Press, New York, 1972), pp. 85–103

  4. S.A. Cook, in Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, edited by P.M. Lewis, M.J. Fischer, J.E. Hopcroft, A.L. Rosenberg, J.W. Thatcher, P.R. Young (ACM, New York, 1971), pp. 151–158

  5. Y. Cao, J. Chen, Y. Liu, Lect. Notes Comput. Sci. 6139, 93 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Kociumaka, M. Pilipczuk, arXiv:1306.3566v1 (2013)

  7. J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, S. Wernicke, J. Comput. System Sci. 72, 1386 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Bafna, P. Berman, T. Fujito, SIAM J. Discrete Math. 12, 289 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. I. Razgon, Lect. Notes Comput. Sci. 4059, 160 (2006)

    Article  MathSciNet  Google Scholar 

  10. F.V. Fomin, S. Gaspers, A.V. Pyatkin, Lect. Notes Comput. Sci. 4169, 184 (2006)

    Article  MathSciNet  Google Scholar 

  11. S. Bau, N.C. Wormald, S. Zhou, Random Struct. Alg. 21, 397 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. F.H. Wang, Y.L. Wang, J.M. Chang, Inform. Process. Lett. 89, 203 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Jiang, T. Liu, K. Xu, Lect. Notes Comput. Sci. 6831, 424 (2011)

    Article  MathSciNet  Google Scholar 

  14. M. Bayati, C. Borgs, A. Braunstein, J. Chayes, A. Ramezanpour, R. Zecchina, Phys. Rev. Lett. 101, 037208 (2008)

    Article  ADS  Google Scholar 

  15. C.H. Yeung, D. Saad, K.Y.M. Wong, Proc. Natl. Acad. Sci. USA 110, 13717 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. C.H. Yeung, D. Saad, J. Phys. A 46, 103001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. H.J. Zhou, Eur. Phys. J. B 86, 455 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Science 220, 671 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. P. Galinier, E. Lemamou, M.W. Bouzidi, J. Heuristics 19, 797 (2013)

    Article  Google Scholar 

  20. I. Biazzo, A. Braunstein, R. Zecchina, Phys. Rev. E 86, 026706 (2012)

    Article  ADS  Google Scholar 

  21. D.R. He, Z.H. Liu, B.H. Wang, Complex Systems and Complex Networks (Higher Education Press, Beijing, 2009)

  22. H.J. Zhou, R. Lipowsky, J. Stat. Mech. 2007, P01009 (2007)

    Google Scholar 

  23. H.J. Zhou, R. Lipowsky, Proc. Natl. Acad. Sci. USA 102, 10052 (2005)

    Article  ADS  Google Scholar 

  24. L.W. Beineke, R.C. Vandell, J. Graph Theory 25, 59 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. K. Li, H. Ma, H.J. Zhou, Phys. Rev. E 79, 031102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. F. Krzakala, L. Zdeborova, Phys. Rev. Lett. 102, 238701 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Jun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, SM., Zhou, HJ. Solving the undirected feedback vertex set problem by local search. Eur. Phys. J. B 87, 273 (2014). https://doi.org/10.1140/epjb/e2014-50289-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50289-7

Keywords

Navigation