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Abstract. Classical blockmodel is known as the simplest among models of networks with community struc-
ture. The model can be also seen as an extremely simply example of interconnected networks. For this
reason, it is surprising that the percolation transition in the classical blockmodel has not been examined so
far, although the phenomenon has been studied in a variety of much more complicated models of intercon-
nected and multiplex networks. In this paper we derive the self-consistent equation for the size the global
percolation cluster in the classical blockmodel. We also find the condition for percolation threshold which
characterizes the emergence of the giant component. We show that the discussed percolation phenomenon
may cause unexpected problems in a simple optimization process of the multilevel network construction.
Numerical simulations confirm the correctness of our theoretical derivations.

1 Introduction

For over a decade scientists of various disciplines have been
showing an increasing interest in the field of complex net-
works [1–3]. It was related to the rapid development of the
Internet, which in turn has made available a huge amount
of data on the structure and functioning of many real net-
works, such as social networks, biological networks (e.g.
food chains) and data communication networks (e.g. In-
ternet), among others.

Initially, in the awareness of researchers, complex net-
works functioned as isolated systems. The structural and
functional properties of individual networks were inves-
tigated. Only recently studying of multiplex network sys-
tems has begun in which individual networks may interact
with each other [4,5]. An example of such interacting net-
works is a network that supplies energy to the computer
network which in turn controls the energy distribution in
the first network.

To understand the functioning of both types of net-
works (i.e. single networks and systems of interacting net-
works) the corresponding models are created and different
dynamic processes are defined, such as the spread of epi-
demics and the opinion formation or diffusion processes.
In many of these processes, the underlying phenomenon
is percolation. For example, using percolation theory it
has become possible to understand, why real networks are
highly robust to random failures but fragile against at-
tacks [6,7]. Recently, percolation theory was also used in
a discussion on structural properties of the important class
of multiplex network systems, see e.g. [8–11].

In this work we study the phenomenon of percola-
tion in the so-called classical blockmodel which has a long
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tradition of research in both social and computer sci-
ences [12–17] and recently also in the study of complex
networks [18–22]. The classical blockmodel was introduced
by Holland et al. in 1983 [12]. This model is interesting
from the point of view of recent studies because it can
be seen as a model of a single network with community
structure [23,24], but also as a simple model of a two-level
network which consists of smaller networks (i.e. network
of networks) [4,5]. In such a two-level network, nodes may
be connected through local edges (at the first level) and
global ones (at the second level). This model can also be
regarded as a generalization of the classical random graph
of Erdös-Rényi (ER) wherein each of the N nodes is as-
signed to one of K blocks (communities, local area net-
works) of the same size. The probability of the existence
of an edge is different for the nodes belonging to the same
block (local level) and different, when nodes belong to dif-
ferent blocks (global level).

Further in the paper we deal with the following issues:
in Section 2 we recall a simple microscopic formalism de-
scribed in our earlier work [25], which allowed us to calcu-
late the percolation threshold and the size of the largest
connected component in classical random graphs. This
formalism, as one of many that have been used to de-
scribe the phenomenon of percolation in classical random
graphs (see e.g. [26–28]), is in our opinion the simplest one.
In Section 3 we use this formalism to study percolation
phase transition in the classical blockmodel. We determine
the percolation threshold and the size of the largest con-
nected component (i.e. percolation cluster). These results
are compared with the results of numerical simulations.
In Section 4, we discuss a simple optimization process of
the construction procedure of two-level distribution net-
works. The procedure is based on the results obtained in
Section 3. Section 5 is devoted to the summary of results.
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2 Percolation in classical random graphs

Classical random graphs were first discussed by Erdös and
Rényi in the articles of the mid-twentieth century. In this
paper, the term classical random graph refers to a certain
generalisation of the original ER model: classical random
graph means the graph of N numbered vertices (nodes),
where each pair of vertices is connected by an edge with
probability p.

In this section, our goal is to remind one of the
method [25], that allows to determine the size, NG, of
the largest cluster (i.e. the number of nodes belonging
to the cluster) in classical random graphs. From previ-
ous works on this subject, we know that for N � 1, when
the average node degree is less than one, 〈k〉 < 1, the rel-
ative size of the largest cluster, S = NG/N , is equal to
zero. Only for 〈k〉 > 1, the parameter S becomes greater
than zero and increases, reaching the value of S = 1 when
all nodes belong to the same cluster. The critical value of
〈k〉 = 1 is called the percolation threshold and the largest
connected component for 〈k〉 > 1 is called the percolation
cluster. In percolation theory, the relative size of the per-
colation cluster, S, which expresses the probability that
a randomly selected node of the graph belongs to that
cluster, acts as an order parameter of percolation phase
transition.

To determine the value of parameter S, let us consider
a randomly selected node i belonging to the ER graph.
From the design procedure it follows that in the classical
random graph all nodes and all edges are, from a statistical
point of view, the same. This means that probability S,
that the randomly chosen vertex i belongs to the largest
cluster is equal to probability that at least one of N − 1
other vertices of the graph belongs to such a cluster and
it is connected to the node i. Thus, if A{i,j} corresponds
to the event that the edge {i, j} (between the considered
node i and a node j) belongs to the largest cluster, then
the probability that the node i also belongs to this cluster
becomes:

S = P

⎛
⎝

N−1⋃
j=1

A{i,j}

⎞
⎠ . (1)

Since the events A{i,j} are independent, then using the
known theorem on the sum of independent events [25,29],
i.e.

P

⎛
⎝

N−1⋃
j=1

A{i,j}

⎞
⎠ = 1 − exp

⎡
⎣−

N−1∑
j=1

P (A{i,j})

⎤
⎦, (2)

equation (1) can be written as:

S = 1 − exp

⎡
⎣−

N−1∑
j=1

P (A{i,j})

⎤
⎦ . (3)

Equation (3) can be further simplified, using the fact that
P (A{i,j}) is equal to the product of probability p which

Fig. 1. Percolation in classical random graphs. (a) Size of the
giant component S versus the average degree 〈k〉 (the scattered
points are results of numerical simulations and the solid line
is theoretical solution obtained from Eq. (5)). (b) Graphical
solution of equation (5) for the size of the giant component
(detailed description is given in the text).

means that the edge {i, j} exists and probability S that j
belongs to the largest connected component:

P (A{i,j}) = pS. (4)

Therefore, substituting the expression (4) to equation (3)
we obtain the well-known self-consistency equation for the
size of percolation cluster:

S = 1 − e−〈k〉S , (5)

where 〈k〉 = p(N −1) � pN is the average degree of nodes
in in the classical random graph.

For the first time, equation (5) was given by Erdös and
Rényi in 1959 [26]. It gives the relative size of the giant
component for any given value of the mean degree 〈k〉.
However, although this equation is very simple it does not
have a simple solution for the size of the giant compo-
nent as a function of 〈k〉 in closed form. The numerical
solution of equation (5) for S as compared with results
of Monte Carlo simulations is shown in Figure 1a. Fortu-
nately, graphical solution of this equation, which is given
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in Figure 1b, in a very suggestive way illustrates the per-
colation transition in classical random graphs (see also
Fig. 12.1 in Ref. [3] and Fig. 3 in Ref. [25]). The three
solid curves shown in Figure 1b represent the right hand
side of equation (5), i.e. the function y(S) = 1 − e−〈k〉S ,
for different values of 〈k〉. The dashed line in the figure
is the linear function y(S) = S. Where the line and the
curve cross, the corresponding value of S is a solution to
equation (5).

As the figure shows, depending on the value of 〈k〉
there may be either one solution for S or two. For small
〈k〉 (bottom curve in Fig. 1b) the only solution is S = 0,
which means that the percolation cluster does not exists.
For sufficiently large 〈k〉 (top curve), equation (5) has two
solutions, S = 0 and S �= 0, the first of which is unstable.
It means, that the percolation cluster of size S �= 0 appears
in a graph. The middle curve in the figure corresponds to
the transition point between the two regimes. The char-
acteristic point (the percolation threshold) is where the
gradient of the curve y(S) = 1 − e−〈k〉S and the slope of
the dashed line y(S) = S match at S = 0. Therefore, the
point can be determined from the first derivative of the
right-hand side of equation (5):

d(1 − e−〈k〉S)
dS

∣∣∣∣
S=0

= 1. (6)

From the above equation one immediately finds that
the percolation threshold in classical random graphs is
given by:

〈k〉 = 1. (7)

3 Percolation in the classical blockmodel

In the classical blockmodel (see Fig. 2), each of N nodes
is assigned to one of K blocks of the same size R, i.e.
N = KR. In the model, blocks (modules) are ER graphs.
The probability p that there is an edge between the nodes
belonging to the same block is usually different from the
probability q that there is an edge between the nodes be-
longing to different blocks. Further in this paper, the edges
connecting the nodes that belong to the same block will be
called local connections while the edges connecting nodes
from different blocks will be referred to as global ones.
Similarly, when we talk about percolation inside the blocks
and at the level of local connections we will use the notion
of the local percolation cluster. The global percolation clus-
ter will be called the largest connected component of the
whole graph. Such a cluster will be built with the nodes
belonging to different blocks, which are connected through
both local or global edges.

In this section our aim is to find the expression for
percolation threshold and to calculate the relative size of
the global percolation cluster in the classical blockmodel.
In order to do it we will use a method similar to that
of the previous section which allowed us to describe the
percolation transition in classical random graphs.

Thus, let G be the probability that a randomly chosen
node i in the classical blockmodel belongs to the global
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Fig. 2. Classical blockmodel. (a) A small network with block
structure of the type considered in this paper. In this case,
there are three blocks K = 3 of size R = 8, denoted by the
dashed circles, which have dense local connections. Global con-
nections between the blocks are sparse. (b) The adjacency ma-
trix of the graph shown in Figure 1a. Gray areas along the
diagonal represent adjacency matrices for the nodes belonging
to the same blocks. Non zero matrix elements occurring outside
the gray areas represent global connections.

percolation cluster. When we take into account only local
connections of this node, there are only two possible cases:
(a) the node i belongs to the local percolation cluster of
size S, and (b) the node belongs to one of the smaller local
clusters of size s, wherein the probability that a randomly
chosen vertex belongs to a component of size s is given by
(see Eq. (12.50) in Ref. [3]):

πs =
e−〈k〉s(〈k〉s)s−1

s!
, (8)

where ∑
s

πs = 1 − S, (9)

and
〈k〉 = pR (10)
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is the mean local degree of nodes in the classical block-
model1. In both the cases, the probability that the node i
belongs to the global percolation cluster is equal to the
probability that node i itself or at least one of the nodes
(e.g., node j) which belong to the same local cluster (per-
colation or not) are connected by a global edge to a node
belonging to the global percolation cluster.

Therefore, let Bjl be the event that the global edge
{j, l} between the nodes j and l belongs to the global per-
colation cluster (the node j should be thought of as a node
belonging to the same block as well as to the same local
cluster as the node i). It follows that the parameter G,
which is equal to the probability that a randomly selected
node is a global percolation cluster is equal to:

G = SP

⎛
⎝

SR⋃
j=1

N−R⋃
l=1

B{j,l}

⎞
⎠ +

∑
s

πsP

⎛
⎝

s⋃
j=1

N−R⋃
l=1

B{j,l}

⎞
⎠,

(11)
where the summation over j is carried out over all the
nodes belonging to the same local cluster to which the
node i belongs while the summation over l is carried out
over the nodes belonging to other modules.

Then, using the theorem on the sum of independent
events, cf. equation (2), and proceeding similarly as in
Section 2, the expression (11) can be simplified to:

G = S

⎛
⎝1 − exp

⎡
⎣−

SR∑
j=1

N−R∑
l=1

P (B{j,l})

⎤
⎦

⎞
⎠

+
∑

s

πi

⎛
⎝1 − exp

⎡
⎣−

s∑
j=1

N−R∑
l=1

P (B{j,l})

⎤
⎦

⎞
⎠, (12)

where
P (B{j,l}) = qG (13)

is the probability that a node l at the end of the global
edge {j, l} belongs to the global percolation cluster. Fi-
nally, substituting equations (13) to (12), we get the self-
consistent equation for G:

G = S
(
1 − e−qSR(N−R)G

)

+
∑

s

πs

(
1 − e−qs(N−R)G

)
= f(G). (14)

The right hand side of equation (14), i.e. the function
f(G), is continuous and monotonically increasing for G
in the range from 0 to 1. In fact, the behavior of this func-
tion is very similar to the behavior of the right hand side
of equation (5) which was discussed in Section 2. In par-
ticular, it is easy to see that the value of G = 0 (which
means lack of the global percolation cluster) is always the
solution of equation (14). Furthermore, for certain values
of p, q, R, K parameters, a non-zero solution, G �= 0, of
this equation appears which characterizes the emergence
of the global percolation cluster.

1 Cf. the so-called internal and external node degrees in
blockmodels, as they were defined in reference [22].

Fig. 3. Phase diagram for percolation transition in the classi-
cal blockmodel. Points placed in the figure represent results of
numerical simulations for three different network sizes and cor-
respond to values of the parameters 〈k〉 and 〈k∗〉 for which the
largest cluster (averaged over 10 network realizations) starts
to form. Solid lines correspond to equation (15).

Thus, similarly as in classical random graphs, the con-
dition for the emergence of the global percolation cluster
in the classical blockmodel may be obtained by compar-
ing the first derivatives on both sides of equation (14) at
G = 0. After simple algebra the condition for the global
percolation transition, i.e. the point at which a sample-
spanning global cluster first appears, takes the following
form:

〈k∗〉 =
1

S2R + (1 − S)〈s〉 , (15)

where
〈k∗〉 = q(N − R) (16)

is the mean number of global connections attached to a
node, i.e. the average global degree of nodes in the classi-
cal blockmodel, whereas 〈s〉 is the mean size of the local
component to which a randomly chosen node belongs (see
Eq. (12.34) in Ref. [3]),

〈s〉 =
∑

s sπs∑
s πs

=
1

(1 − S)(1 − 〈k〉 + 〈k〉S)
. (17)

Figure 3 shows the results of numerical simulations for
percolation threshold in the classical blockmodel against
the theoretical curves predicted by equation (15). Notable
is that while the theoretical and numerical results agree
for 〈k〉 < 1 and 〈k〉 > 1, for 〈k〉 close to 1 the theoretical
curves diverge, which is not in agreement with numerical
data. This discrepancy is due to the fact that equation (17)
for 〈s〉 diverges at 〈k〉 = 1. At this point, S = 0 and the
denominator of equation (17) vanishes. However, this is
only true for infinite graphs. In finite ER graphs, the size
of the largest cluster SR > 0 for 〈k〉 = 1 (see inset in
Fig. 4). If we replace S in equation (15) with values of
SR obtained from numerical simulations we get rid of the
divergence problem (see Fig. 4).
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Fig. 4. Percolation threshold in the finite-size classical block-
model. Symbols correspond to the same numerical results as
shown in Figure 3. Solid lines represent equation (15), in which
the parameter S characterizing the size of the giant component
in infinite networks was replaced by the parameter SR, which
applies to finite networks. In the inset, the numerical values of
SR for different network sizes (as indicated by the respective
symbols) are shown.

Fig. 5. Percolation in the classical blockmodel. Size of the
global percolation cluster G versus the average global degree
〈k∗〉 for the fixed value of 〈k〉 = 1.5. The solid lines represent
theoretical solution of equation (18) for G.

In Figure 3, the dashed line indicates the fixed value
of the parameter 〈k〉 = 1.5 for which the relative size
of the global percolation cluster, G, is examined against
the theoretical prediction of the self-consistent mean-field
version of equation (14):

G � S
(
1 − e−SR〈k∗〉G

)
+(1−S)

(
1 − e−〈s〉〈k∗〉G

)
. (18)

Figure 5 shows comparison between the theoretical curves
given by equation (18) and the numerically obtained val-
ues of G as a function of 〈k∗〉 for three different network
sizes. The numerical simulations provide an independent
test for correctness of our theoretical calculations.

4 Network optimization procedure

In this section we discuss a possible application of the
discussed percolation phenomenon, namely a network op-
timization process which has been widely studied in recent
years [30–32]. Such an optimization is of common inter-
est in many different areas, among them electrical engi-
neering, telecommunication, road construction and trade
logistics. In the rest of this section we will concentrate on
the economic optimization process which typically aims to
reduce costs while increasing revenues.

Thus, let us consider a business entity such as a net-
work operator or a network manager who earns profit from
connecting local or regional networks. Its revenue is re-
lated to the number in interconnected customers, i.e. it is
proportional to the size of the giant connected component
G, while the costs arise from constructing and maintain-
ing links between regional networks, i.e. they depend on
the number of links L = 〈k∗〉N and this dependence is,
according to the so-called economies-of-scale effects, sub-
linear. Such a sublinear behavior arises from the fact that
the decrease in unit cost of a product or service results
from large-scale operations and the fixed costs are spread
out over more units of output [33]. In the following, for
the purpose of better demonstration, we assume that the
cost scales logarithmically with L. Taking above into con-
sideration, one has to optimize the following equation:

C = (1 − λ) log(L) − λG, (19)

where λ is a parameter controlling a ratio between ex-
penses and income parts. The last equation states, that
the network manager has to find an optimal link den-
sity considering two contradictive demands: an expensive
to maintain, densely connected network which integrates
all the potential customers or inexpensive, sparse network
which brings little income.

The balance (or cost) function, equation (19), for
λ = 0.97 is presented in Figure 6. During the first phase of
the network construction (for L < 40), the growing costs
represent an initial investment a business owner needs to
start up a firm. In the second phase one can see the two
well separated minima of the cost function. They mean
that the network provider who tries to operate in accor-
dance with the economic rule (19) has to remember that
the expanding the business can lead to a temporal increase
of costs and can be discouraging since one has to pass over
the cost barrier.

5 Summary

The classical blockmodel is the simplest among models
of networks with community structure. Majority of sci-
entists, who are engaged in the research of complex net-
works, knows this model mainly due to the fact that over
the last decade, it was often used as a benchmark graph
for testing community detection algorithms [18–20]. How-
ever, in our opinion, this model deserves attention because
it is also an extremely simple example of interconnected
networks. For this reason, it is surprising that the perco-
lation transition in this model has not been examined so
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Fig. 6. Cost function C versus the number of global connec-
tions L for the network characterized by R = 2000, K = 20
and λ = 0.97. Inset: size of the global percolation cluster G,
equation (18), versus L for the same network.

far, although the phenomenon has been studied in a va-
riety of much more complicated models of interconnected
and multiplex networks [8–11].

In summary, in this paper we study percolation in the
classical blockmodel. At the beginning, in Section 2, we
present a general formalism and apply it to the analytical
calculation of the structural properties of classical ran-
dom graphs. Next, in Section 3, we use this formalism
to obtain the self-consistent equation for the size, G, of
the global percolation cluster in the classical blockmodel.
The formalism allows to calculate the position of the phase
transition (i.e. percolation threshold) at which the sample-
spanning global cluster first appears. The carried out nu-
merical simulations confirm the correctness of our theo-
retical predictions. Finally, in Section 4 we show, how our
teoretical derivations may help to understand the cost op-
timization procedure in distribution networks which have
a modular structure.

This work was supported by the Foundation for Polish Sci-
ence (Grant No. POMOST/2012-5/5) and by the European
Union within European Regional Development Fund (Innova-
tive Economy).
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