Skip to main content
Log in

Switching properties of first-order ferroelectric thin films

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A Landau-Devonshire theory with Landau-Khalatnikov dynamic equation is used to investigate the polarization reversal of first-order ferroelectric thin films. Spatial variation of the order parameter P is considered near the surfaces of ferroelectric film, where the surfaces are characterized by an extrapolation length δ. The two surfaces of ferroelectric film have been assumed to be identical, and symmetric boundary conditions are introduced. To simulate switching properties by an applied step field, Euler-Lagrange equation is solved numerically. The hysteresis loops, time evolution of average polarization and switching current are plotted for a few temperature intervals. The appearance of double hysteresis loops for temperature above the superheating temperature t S H suggests that the first-order ferroelectrics can behave like antiferroelectrics. It is discovered that in two temperature intervals (t S C <t<t C and t C <t<t S H ) double-peaked switching curve appears, which implies that switching take place in two stages; and it may be due to the coexistence of paraelectric and ferroelectric phase within these temperature intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Valasek, Phys. Rev. 17, 475 (1921)

    Article  ADS  Google Scholar 

  2. M. Dawber, K.M. Rabe, J.F. Scott, Rev. Mod. Phys. 77, 1083 (2005)

    Article  ADS  Google Scholar 

  3. J.F. Scott, Ferroelectric Memories (Springer, Berlin, New York, 2000)

  4. D.R. Tilley, B. Zeks, Solid State Commun. 49, 823 (1984)

    Article  ADS  Google Scholar 

  5. J.F. Scott, H.D. Duiker, P.D. Beale, B. Pouligny, K. Dimmler, M. Parris, D. Butler, S. Athems, Physica B 150, 160 (1988)

    Article  Google Scholar 

  6. R. Kretschmer, K. Binder, Phys. Rev. B 20, 1065 (1979)

    Article  ADS  Google Scholar 

  7. K. Binder, Ferroelectrics 35, 99 (1981)

    Article  Google Scholar 

  8. L.H. Ong, J. Osman, D.R. Tilley, Phys. Rev. B 63, 144109 (2001)

    Article  ADS  Google Scholar 

  9. E.K. Tan, J. Osman, D.R. Tilley, Solid State Commun. 116, 61 (2000)

    Article  ADS  Google Scholar 

  10. E.K. Tan, J. Osman, D.R. Tilley, Solid State Commun. 117, 59 (2001)

    Article  ADS  Google Scholar 

  11. Y. Ishibashi, H. Orihara, D.R. Tilley, J. Phys. Soc. Jpn 67, 3292 (1998)

    Article  ADS  Google Scholar 

  12. Y. Ishibashi, M. Iwata, A.M.A. Musleh, J. Phys. Soc. Jpn 76, 104702 (2007)

    Article  ADS  Google Scholar 

  13. D. Ricinschi, C. Harnagea, C. Papusoi, L. Mitoseriu, V. Tura, M. Okuyama, J. Phys.: Condens. Matter 10, 477 (1998)

    ADS  Google Scholar 

  14. L.H. Ong, A. Musleh, J. Osman, Ferroelectrics 375, 115 (2008)

    Article  Google Scholar 

  15. L.H. Ong, A. Musleh, Ferroelectrics 380, 150 (2009)

    Article  Google Scholar 

  16. A.M. Musleh, L.-H. Ong, D.R. Tilley, J. Appl. Phys. 105, 061602 (2009)

    Article  ADS  Google Scholar 

  17. A. Musleh, L.H. Ong, AIP Conf. Proc. 1150, 274 (2009)

    Article  ADS  Google Scholar 

  18. L.H. Ong, A. Musleh, J. Osman, J. Fiz. Malaysia 29, 11 (2008)

    Google Scholar 

  19. A.M. Musleh, L.-H. Ong, J. Appl. Phys. 109, 084109 (2011)

    Article  ADS  Google Scholar 

  20. A.M. Alrub, Jordan J. Phys. 3, 31 (2010)

    Google Scholar 

  21. L. Cui, Q. Xu, Z. Han, X. Xu, J.X. Che, H. Xue, T. Lü, Solid State Sci. 16, 65 (2013)

    Article  ADS  Google Scholar 

  22. L. Cui, Z. Han, Q. Xu, X. Xu, Y. Gao, J. Che, T. Lü, Phys. Stat. Sol. B 250, 1804 (2013)

    Article  Google Scholar 

  23. J.C. Burfoot, G.W. Taylor, Polar Dielectrics (MacMillan Press, London, 1979)

  24. A. Leschhorn, H. Kliem, J. Appl. Phys. 114, 094105 (2013)

    Article  ADS  Google Scholar 

  25. E.K. Tan, J. Osman, D.R. Tilley, Phys. Stat. Sol. B 228, 765 (2001)

    Article  ADS  Google Scholar 

  26. R. Blinc, B. Zeks, Soft Mode in Ferroelectrics and Antiferroelectrics (North-Holland Publishing Company, Amsterdam, 1974)

  27. J. Grindlay, An Introduction to the Phenomenological Theory of Ferroelectricity, 1st edn. (Pergamon Press, Oxford, New York, 1970)

  28. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)

  29. W.H. Press, B.P. Flannery, S.A. Teulosky, W.T. Vetterling, Numerical Recips in Fortran 77, in The Art of Scientific Computing (Cambridge University Press, Cambridge, 1997), Vol. 1

  30. S.E. Cummins, J. Appl. Phys. 36, 1958 (1965)

    Article  ADS  Google Scholar 

  31. M. Omura, H. Adachi, Y. Ishibashi, Jpn J. Appl. Phys. 31, 3238 (1992)

    Article  ADS  Google Scholar 

  32. W.J. Merz, J. Appl. Phys. 27, 938 (1956)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Musleh Alrub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alrub, A.M., Ong, LH. Switching properties of first-order ferroelectric thin films. Eur. Phys. J. B 88, 9 (2015). https://doi.org/10.1140/epjb/e2014-50209-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50209-y

Keywords

Navigation