Skip to main content

Advertisement

Log in

Multivariate pressure effects on an electron hopping process in ferroelectric KTa1−xNbxO3

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effect induced by the presence of a polaron related relaxation process on the dielectric properties of a ferroelectric KTa1−x Nb x O3 (KTN) crystal was investigated (10-2−106 Hz, at 300−375 K) using broadband dielectric spectroscopy. Characterization of the process using just the standard frequency domain dielectric parameters can nonetheless provide penetrating insight into its nature and origins. The three parameters, namely: relaxation time (τ), Cole-Cole loss broadening (α), and dielectric strength (Δϵ) provide each one in its own way, much useful and often overlooked information. The Activation Energy along with the Meyer-Neldel dependance, both extracted from τ serve to illuminate the dynamic properties. At the same time, α and especially the combined α(lnτ) relationship, expose the fractal structure of the underlying landscape. Finally, the static parameter Δϵ, enables quantification of the dipolar correlations. Hydrostatic pressure (up to 7.5 kbar) was applied to gently perturb the system and observe the outcome on all of the various parameters. This additional degree of freedom allows for a much more comprehensive exploration of the phase space behavior of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Blinc, B. Zeks, Soft modes in ferroelectrics and antiferroelectrics (North-Holland Pub. Co., Amsterdam; American Elsevier Pub. Co., New York, 1974)

  2. A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31 (2006)

    Article  ADS  Google Scholar 

  3. R.A. Cowley, S.N. Gvasaliya, S.G. Lushnikov, B. Roessli, G.M. Rotaru, Adv. Phys. 60, 229 (2011)

    Article  ADS  Google Scholar 

  4. D. Phelan, C. Stock, J.A. Rodriguez-Rivera, S. Chi, J. Leo, X. Long, Y.-J. Xie, A.A. Bokov, Z.-G. Ye, P. Ganesh, P.M. Gehring, Proc. Natl. Acad. Sci. 111, 1754 (2014)

    Article  ADS  Google Scholar 

  5. G.A. Samara, J. Phys.: Condens. Matter 15, R367 (2003)

    ADS  Google Scholar 

  6. A. Puzenko, P.B. Ishai, Y. Feldman, Phys. Rev. Lett. 105, 037601 (2010)

    Article  ADS  Google Scholar 

  7. D. Emin, Phys. Rev. B 61, 14543 (2000)

    Article  ADS  Google Scholar 

  8. Y. Feldman, A. Puzenko, Y. Ryabov, Chem. Phys. 284, 139 (2002)

    Article  ADS  Google Scholar 

  9. P. Ben Ishai, C.E.M. de Oliveira, Y. Ryabov, Y. Feldman, A.J. Agranat, Phys. Rev. B 70, 132104 (2004)

    Article  ADS  Google Scholar 

  10. S. Wakimoto, G.A. Samara, R.K. Grubbs, E.L. Venturini, L.A. Boatner, G. Xu, G. Shirane, S.H. Lee, Phys. Rev. B 74, 54101 (2006)

    Article  ADS  Google Scholar 

  11. I.A. Kornev, L. Bellaiche, P. Bouvier, P.-E. Janolin, B. Dkhil, J. Kreisel, Phys. Rev. Lett. 95, 196804 (2005)

    Article  ADS  Google Scholar 

  12. A.J. Agranat, in Infrared Holography for Optical Communications number 86 in Topics in Applied Physics, edited by P. Boffi, D. Piccinin, M.C. Ubaldi (Springer, Berlin, Heidelberg, 2003), pp. 133–161

  13. S. Triebwasser, Phys. Rev. 114, 63 (1959)

    Article  ADS  Google Scholar 

  14. J. Toulouse, R.K. Pattnaik, J. Phys. Chem. Solids 57, 1473 (1996)

    Article  ADS  Google Scholar 

  15. G. Burns, F. Dacol, Solid State Commun. 42, 9 (1982)

    Article  ADS  Google Scholar 

  16. P. Ben Ishai. Ph.D. thesis, Hebrew University of Jerusalem, 2009

  17. A. Do, M. Paluch, H. Sillescu, G. Hinze, J. Chem. Phys. 117, 6582 (2002)

    Article  ADS  Google Scholar 

  18. S. Havriliak, S. Negami, Polymer 8, 161 (1967)

    Article  Google Scholar 

  19. K.S. Cole, R.H. Cole, J. Chem. Phys. 10, 98 (1951)

    Article  ADS  Google Scholar 

  20. H. Frohlich, Theory of Dielectrics: Dielectric Constant and Dielectric Loss, 2nd edn. (Oxford University Press, USA, 1987)

  21. G. Bitton, Y. Feldman, A.J. Agranat, J. Non-Cryst. Solids 305, 362 (2002)

    Article  ADS  Google Scholar 

  22. S.E. Lerner, P. Ben Ishai, A. Agranat, Y. Feldman, J. Non-Cryst. Solids 353, 4422 (2007)

    Article  ADS  Google Scholar 

  23. G. Grigas, Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials, 1st edn. (CRC Press, 1996)

  24. A. Yelon, B. Movaghar, Phys. Rev. Lett. 65, 618 (1990)

    Article  ADS  Google Scholar 

  25. Y. Girshberg, Y. Yacoby, Solid State Commun. 103, 425 (1997)

    Article  ADS  Google Scholar 

  26. Y.E. Ryabov, Y. Feldman, N. Shinyashiki, S. Yagihara, J. Chem. Phys. 116, 8610 (2002)

    Article  ADS  Google Scholar 

  27. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. B 46, 8003 (1992)

    Article  ADS  Google Scholar 

  28. E. Dul’kin, S. Kojima, M. Roth, Europhys. Lett. 97, 57004 (2012)

    Article  ADS  Google Scholar 

  29. J.G. Kirkwood, J. Chem. Phys. 7, 911 (1939)

    Article  ADS  Google Scholar 

  30. P. Ben Ishai, S.E. Lerner, A. Puzenko, Y. Feldman, in NATO Science for Peace and Security Series B: Physics and Biophysics, edited by Y.P. Kalmykov (Springer, Netherlands, 2013), pp. 37–48

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ben Ishai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerner, S., Feldman, Y., Mierzwa, M. et al. Multivariate pressure effects on an electron hopping process in ferroelectric KTa1−xNbxO3 . Eur. Phys. J. B 87, 158 (2014). https://doi.org/10.1140/epjb/e2014-50197-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50197-x

Keywords

Navigation