Skip to main content

Advertisement

Log in

Structure and elastic anisotropy of uranium under pressure up to 100 GPa

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The pressure-induced structural and elastic evolutions of uranium with orthorhombic Cmcm structure up to 100 GPa are investigated by performing ab initio density functional calculations using the projector augmented wave (PAW) method. The calculated lattice parameters a, b, c, and internal coordinate y, as well as the atomic volume V of the orthorhombic uranium at zero pressure and high pressure are in favorable agreement with the available experimental data and other theoretical values. The nine different elastic constants under high pressure, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, the brittle/ductile characteristics, Debye temperature and the integration of elastic wave velocities over different directions dependences on pressure are also successfully obtained. Especially, the anisotropy of the directional linear compressibility and the Young’s modulus under high pressure up to 100 GPa is obtained and analyzed systematically for the first time. It turns out that Cmcm uranium should be stabilized mechanically at least up to 100 GPa, this accords with angle-dispersive X-ray diffraction experimental findings in diamond anvil cells of Le Bihan et al. [Phys. Rev. B 67, 134102 (2003)]. The calculated various elastic anisotropic factors, directional Young’s modulus and linear compressibility demonstrate that Cmcm uranium possesses high elastic anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Chantis, R.C. Albers, M.D. Jones, M. van Schilfgaarde, T. Kotani, Phys. Rev. B 78, 081101 (2008)

    Article  ADS  Google Scholar 

  2. L. Fast, O. Eriksson, B. Johansson, J.M. Wills, G. Straub, H. Roeder, L. Nordström, Phys. Rev. Lett. 81, 2978 (2008)

    Article  ADS  Google Scholar 

  3. J. Bouchet, Phys. Rev. B 77, 024113 (2008)

    Article  ADS  Google Scholar 

  4. A. Dewaele, J. Bouchet, F. Occelli, M. Hanfland, G. Garbarino, Phys. Rev. B 88, 134202 (2013)

    Article  ADS  Google Scholar 

  5. B. Beeler, C. Deo, M. Baskes, M. Okuniewski, J. Nucl. Mater. 433, 143 (2013)

    Article  ADS  Google Scholar 

  6. P. Söderlind, Phys. Rev. B 66, 085113 (2002)

    Article  ADS  Google Scholar 

  7. S. Raymond, J. Bouchet, G.H. Lander, M. Le Tacon, G. Garbarino, M. Hoesch, J.-P. Rueff, M. Krisch, J.C. Lashley, R.K. Schulze, R.C. Albers, Phys. Rev. Lett. 107, 136401 (2011)

    Article  ADS  Google Scholar 

  8. J. Bouchet, R.C. Albers, J. Phys.: Condens. Matter 23, 215402 (2011)

    ADS  Google Scholar 

  9. T. Le Bihan, S. Heathman, M. Idiri, G.H. Lander, J.M. Wills, A.C. Lawson, A. Lindbaum, Phys. Rev. B 67, 134102 (2003)

    Article  ADS  Google Scholar 

  10. S. Adak, H. Nakotte, P.F. de Châtel, B. Kiefer, Physica B 406, 3342 (2011)

    Article  ADS  Google Scholar 

  11. J.H. Li, Q.B. Ren, C.H. Lu, L. Lu, Y. Dai, B.X. Liu, J. Alloys Compd. 516, 139 (2012)

    Article  Google Scholar 

  12. M. Kanmani, R. Lavanya, D. Silambarasan, K. Iyakutti, V. Vasu, Y. Kawazoe, Solid State Commun. 183, 1 (2014)

    Article  ADS  Google Scholar 

  13. M. Zhang, H. Yan, Solid State Commun. 187, 53 (2014)

    Article  ADS  Google Scholar 

  14. Y. Gou, Z. Fu, Y. Liang, Z. Zhong, S. Wang, Solid State Commun. 187, 28 (2014)

    Article  ADS  Google Scholar 

  15. Z. Mei, M. Stan, B. Pichler, J. Nucl. Mater. 440, 63 (2013)

    Article  ADS  Google Scholar 

  16. C. Valencia-Balvín, S. Pérez-Walton, G.M. Dalpian, J.M. Osorio-Guillén, Comput. Mater. Sci. 81, 133 (2014)

    Article  Google Scholar 

  17. R. Liu, J. Shang, F. Wang, Comput. Mater. Sci. 81, 158 (2014)

    Article  Google Scholar 

  18. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  19. G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  20. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  21. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  22. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  23. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  24. J.F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, 1985)

  25. J.P. Crocombette, F. Jollet, L. Thien Nga, T. Petit, Phys. Rev. B 64, 104107 (2001)

    Article  ADS  Google Scholar 

  26. C.S. Barett, M.H. Mueller, R.L. Hittermann, Phys. Rev. 129, 625 (1963)

    Article  ADS  Google Scholar 

  27. J.W. Yang, T. Gao, L.Y. Guo, Physica B 429, 119 (2013)

    Article  ADS  Google Scholar 

  28. E. Fisher, H. McSkimin, J. Appl. Phys. 29, 1473 (1958)

    Article  ADS  Google Scholar 

  29. C.D. Taylor, Phys. Rev. B 77, 094119 (2008)

    Article  ADS  Google Scholar 

  30. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007)

    Article  ADS  Google Scholar 

  31. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84, 4891 (1998)

    Article  ADS  Google Scholar 

  32. S. Li, X. Ju, C. Wan, Comput. Mater. Sci. 81, 378 (2014)

    Article  Google Scholar 

  33. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Google Scholar 

  34. D.H. Chung, W.R. Buessem, Anisotropy in Single-crystal Refractory Compounds (Plenum Press, New York, 1968)

  35. S. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, JW., Gao, T., Liu, BQ. et al. Structure and elastic anisotropy of uranium under pressure up to 100 GPa. Eur. Phys. J. B 87, 130 (2014). https://doi.org/10.1140/epjb/e2014-50159-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50159-4

Keywords

Navigation