Skip to main content
Log in

Linear response within the projector-based renormalization method: many-body corrections beyond the random phase approximation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The explicit evaluation of linear response coefficients for interacting many-particle systems still poses a considerable challenge to theoreticians. In this work we use a novel many-particle renormalization technique, the so-called projector-based renormalization method, to show how such coefficients can systematically be evaluated. To demonstrate the prospects and power of our approach we consider the dynamical wave-vector dependent spin susceptibility of the two-dimensional Hubbard model and also determine the subsequent magnetic phase diagram close to half-filling. We show that the superior treatment of (Coulomb) correlation and fluctuation effects within the projector-based renormalization method significantly improves the standard random phase approximation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.E. Bickers, D.J. Scalapino, S.R. White, Phys. Rev. Lett. 62, 961 (1989)

    Article  ADS  Google Scholar 

  2. G. Baym, L.P. Kadanoff, Phys. Rev. 124, 287 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Benjamin/Cumming Publishing Company, Reading, Massachusetts, 1962)

  4. G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2008)

  5. Y.M. Vilk, A.M.S. Tremblay, J. Phys. I 7, 1309 (1997)

    Google Scholar 

  6. N. Bulut, D.J. Scalapino, S.R. White, Technical report, University of Illinois, 1994

  7. Y.M. Vilk, L. Chen, A.M.S. Tremblay, Phys. Rev. B 49, 13267 (1994)

    Article  ADS  Google Scholar 

  8. M. Jemaï, P. Schuck, J. Dukelsky, R. Bennaceur, Phys. Rev. B 71, 085115 (2005)

    Article  ADS  Google Scholar 

  9. P. Krüger, P. Schuck, Europhys. Lett. 27, 395 (1994)

    Article  ADS  Google Scholar 

  10. J.G. Hirsch, A. Mariano, J. Dukelsky, P. Schuck, Ann. Phys. 296, 187 (2002)

    Article  ADS  Google Scholar 

  11. K.W. Becker, A. Hübsch, T. Sommer, Phys. Rev. B 66, 235115 (2002)

    Article  ADS  Google Scholar 

  12. S. Sykora, A. Hübsch, K.W. Becker, Europhys. Lett. 85, 57003 (2009)

    Article  ADS  Google Scholar 

  13. A. Hübsch, K.W. Becker, Eur. Phys. J. B 33, 1434 (2003)

    Article  Google Scholar 

  14. S. Sykora, A. Hübsch, K.W. Becker, G. Wellein, H. Fehske, Phys. Rev. B 71, 045112 (2005)

    Article  ADS  Google Scholar 

  15. S. Sykora, A. Hübsch, K.W. Becker, Europhys. Lett. 76, 644 (2006)

    Article  ADS  Google Scholar 

  16. V.-N. Phan, H. Fehske, K.W. Becker, Europhys. Lett. 95, 17006 (2011)

    Article  ADS  Google Scholar 

  17. V.-N. Phan, K.W. Becker, H. Fehske, Phys. Rev. B 88, 205123 (2013)

    Article  ADS  Google Scholar 

  18. V.-N. Phan, H. Fehske, New J. Phys. 14, 075007 (2012)

    Article  ADS  Google Scholar 

  19. V.-N. Phan, K.W. Becker, H. Fehske, Phys. Rev. B 81, 205117 (2010)

    Article  ADS  Google Scholar 

  20. S. Ejima, S. Sykora, K.W. Becker, H. Fehske, Phys. Rev. B 86, 155149 (2012)

    Article  ADS  Google Scholar 

  21. V.-N. Phan, A. Mai, K.W. Becker, Phys. Rev. B 82, 045101 (2010)

    Article  ADS  Google Scholar 

  22. S. Sykora, K.W. Becker, Sci. Rep. 3, 2691 (2013)

    Article  ADS  Google Scholar 

  23. M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963)

    Article  ADS  Google Scholar 

  24. J. Hubbard, Proc. Roy. Soc. Lond. Ser. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  25. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963)

    Article  ADS  MATH  Google Scholar 

  26. M. Takahashi, Thermodynamics of One-Dimensional Solvable Models (Cambridge University Press, Cambridge, 1999)

  27. F.H.L. Essler, H. Frahm, F. Göhmann, A. Klümper, V.E. Korepin, The One-Dimensional Hubbard Model (Cambridge University Press, Cambridge, 2005)

  28. F. Wegner, Ann. Phys. (Leipzig) 3, 77 (1994)

    Article  ADS  MATH  Google Scholar 

  29. S. Kehrein, The Flow Equation Approach to Many-Particle Systems, Springer Tracts in Modern Physics 217 (Springer Berlin, 2006)

  30. M. Zapalska, T. Domański, Phys. Rev. B 84, 174520 (2011)

    Article  ADS  Google Scholar 

  31. P. Fritsch, S. Kehrein, Phys. Rev. B 81, 035113 (2010)

    Article  ADS  Google Scholar 

  32. H. Krull, N.A. Drescher, G.S. Uhrig, Phys. Rev. B 86, 125113 (2012)

    Article  ADS  Google Scholar 

  33. A. Verdeny, A. Mielke, F. Mintert, Phys. Rev. Lett. 111, 175301 (2013)

    Article  ADS  Google Scholar 

  34. A. Hübsch, S. Sykora, K.W. Becker, arXiv:0809.3360 (2008)

  35. D. Penn, Phys. Rev. 142, 350 (1966)

    Article  ADS  Google Scholar 

  36. J.E. Hirsch, Phys. Rev. B 31, 4403 (1985)

    Article  ADS  Google Scholar 

  37. W.F. Brinkman, T.M. Rice, Phys. Rev. B 2, 4302 (1970)

    Article  ADS  Google Scholar 

  38. G. Kotliar, A.E. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Deeg, H. Fehske, H. Büttner, Z. Phys. B 88, 283 (1992)

    Article  ADS  Google Scholar 

  40. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  41. G.D. Mahan, Many-particle physics (Kluwer Academic/Plenum Publishers, New York, 2000)

  42. M. Deeg, H. Fehske, S. Körner, S. Trimper, D. Ihle, Z. Phys. B 95, 87 (1994)

    Article  ADS  Google Scholar 

  43. B. Zenker, D. Ihle, F.X. Bronold, H. Fehske, Phys. Rev. B 83, 235123 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus W. Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan, VN., Fehske, H. & Becker, K. Linear response within the projector-based renormalization method: many-body corrections beyond the random phase approximation. Eur. Phys. J. B 87, 66 (2014). https://doi.org/10.1140/epjb/e2014-50028-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50028-2

Keywords

Navigation