Skip to main content
Log in

Liénard-type chemical oscillator

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We show that a class of arbitrary, autonomous kinetic equations in two variables describing chemical and biochemical oscillations can be reduced to the form of a Liénard oscillator. The basis of this reduction scheme is a set of linear transformations of the original variables into a new set of variables which can be found by direct inspection of the kinetic equations. Our study reveals that despite their diverse origin, these kinetic equations when cast as a Liénard system form a universality class, make it possible to identify the forcing term as well as the nonlinear damping coefficient responsible for dynamical control of the underlying limit cycle behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Bray, J. Am. Chem. Soc. 43, 1262 (1921)

    Article  Google Scholar 

  2. W.C. Bray, H.A. Liebhafsky, J. Am. Chem. Soc. 53, 38 (1931)

    Article  Google Scholar 

  3. B.P. Belousov, Collection of Short Papers on Radiation Medicine (Medgiz, Moscow, 1958), p. 145

  4. A.M. Zhabotinsky, Dokl. Akad. Nauk SSSR 157, 392 (1964)

    Google Scholar 

  5. R.J. Field, R.M. Noyes, J. Chem. Phys. 60, 1877 (1974)

    Article  ADS  Google Scholar 

  6. R.A. Schmitz, K.R. Graziani, J.L. Hudson, J. Chem. Phys. 67, 3040 (1977)

    Article  ADS  Google Scholar 

  7. J.J. Tyson, J. Chem. Phys. 66, 905 (1977)

    Article  ADS  Google Scholar 

  8. V. Beato, H. Engel, L. Schimansky-Geier, Eur. Phys. J. B 58, 323 (2007)

    Article  ADS  Google Scholar 

  9. E.E. Selkov, Eur. J. Biochem. 4, 79 (1968)

    Article  Google Scholar 

  10. A. Goldbeter, Biochemical Oscillations and Biological Rhythms (Cambridge University Press, Cambridge, 1996)

  11. J. Higgins, Proc. Natl. Acad. Sci. USA 51, 989 (1964)

    Article  ADS  Google Scholar 

  12. A. Goldbeter, R. Lefever, Biophys. J. 12, 1302 (1972)

    Article  ADS  Google Scholar 

  13. S. Kar, D.S. Ray, Phys. Rev. Lett. 90, 238102 (2003)

    Article  ADS  Google Scholar 

  14. E.B. Postnikov, D.V. Verveyko, A.Yu. Verisokin, Phys. Rev. E 83, 062901 (2011)

    Article  ADS  Google Scholar 

  15. D.A.J. van Zwieten, J.E. Rooda, D. Armbruster, J.D. Nagy, Eur. Phys. J. B 84, 673 (2011)

    Article  ADS  Google Scholar 

  16. M.J. Berridge, J. Biol. Chem. 265, 9583 (1990)

    Google Scholar 

  17. M.J. Berridge, Cell Calcium 12, 63 (1991)

    Article  Google Scholar 

  18. V.P. Zhdanov, Eur. Phys. J. B 29, 485 (2002)

    Article  ADS  Google Scholar 

  19. N. Kapur, G.A. Mignery, K. Banach, Am. J. Physiol. 292, C1510 (2007)

    Article  Google Scholar 

  20. J.M.A.M. Kusters, J.M. Cortes, W.P.M. van Meerwijk, D.L. Ypey, A.P.R. Theuvenet, C.C.A.M. Gielen, Phys. Rev. Lett. 98, 098107 (2007)

    Article  ADS  Google Scholar 

  21. J. Tyson, S. Kauffman, J. Math. Biol. 1, 289 (1975)

    Article  MATH  Google Scholar 

  22. A.W. Murray, M.W. Kirschner, Science 246, 614 (1989)

    Article  ADS  Google Scholar 

  23. L. Chen, R. Wang, T.J. Kobayashi, K. Aihara, Phys. Rev. E 70, 011909 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  24. D. Battogtokh, J.J. Tyson, Phys. Rev. E 73, 011910 (2006)

    Article  ADS  Google Scholar 

  25. P.E. Hardin, J.C. Hall, M. Rosbash, Nature 343, 536 (1990)

    Article  ADS  Google Scholar 

  26. A. Goldbeter, Proc. R. Soc. Lond. B 261, 319 (1995)

    Article  ADS  Google Scholar 

  27. A. Goldbeter, Nature 420, 238 (2002)

    Article  ADS  Google Scholar 

  28. M. Yi, Y. Jia, Phys. Rev. E 72, 012902 (2005)

    Article  ADS  Google Scholar 

  29. M. Yi, Y. Jia, Q. Liu, J. Li, C. Zhu, Phys. Rev. E 73, 041923 (2006)

    Article  ADS  Google Scholar 

  30. S. Sen, S.S. Riaz, D.S. Ray, J. Theor. Biol. 250, 103 (2008)

    Article  MathSciNet  Google Scholar 

  31. G. Bordyugov, A.E. Granada, H. Herzel, Eur. Phys. J. B 82, 227 (2011)

    Article  ADS  Google Scholar 

  32. M. Herschkowitz-Kaufman, G. Nicolis, J. Chem. Phys. 56, 1890 (1972)

    Article  ADS  Google Scholar 

  33. G. Nicolis, I. Prigogine, Self-organization in Non-equilibrium Systems (Wiley Interscience, New York, 1977)

  34. A.I. Lavrova, E.B. Postnikov, Yu.M. Romanovsky, Phys.-Usp. 52, 1239 (2009)

    Article  ADS  Google Scholar 

  35. P. Gray, S.K. Scott, Ber. Bun. Phys. Chem. 90, 985 (1986)

    Article  Google Scholar 

  36. P. Gray, S.K. Scott, Chemical Oscillations and Instabilities (Clarendon, Oxford, 1990)

  37. C.B. Muratov, V.V. Osipov, Eur. Phys. J. B 22, 213 (2001)

    Article  ADS  Google Scholar 

  38. D. Das, P. Ghosh, D.S. Ray, J. Chem. Phys. 135, 124104 (2011)

    Article  ADS  Google Scholar 

  39. T.S. Briggs, W.C. Rauscher, J. Chem. Educ. 50, 496 (1973)

    Article  Google Scholar 

  40. I.R. Epstein, J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics (Oxford University Press, New York, 1998)

  41. A.A. Andronov, E.A. Leontovich, I.I. Gerdon, A.G. Maier, Qualitative theory of second-order dynamic systems (Wiley, New York, 1973)

  42. S.N. Pandey, P.S. Bindu, M. Senthilvelan, M. Lakshmanan, J. Math. Phys. 50, 102701 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  43. D. Banerjee, J.K. Bhattacharjee, J. Phys. A 43, 062001 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  44. M. Messias, M.R.A. Gouveia, Physica D 240, 1402 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. M.L. Cartwright, J. Lond. Math. Soc. 35, 367 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  46. Z. Ran, Adv. Appl. Fluid Mech. 5, 41 (2009)

    MATH  MathSciNet  Google Scholar 

  47. D.W. Jordan, P. Smith, Nonlinear Ordinary Differential Equations: an introduction for Scientists and Engineers, 4th edn. (Oxford University Press, Oxford, 2007)

  48. J. Boissonade, P. de Kepper, J. Phys. Chem. 84, 501 (1980)

    Article  Google Scholar 

  49. P. Gray, S.K. Scott, J.H. Merkin, J. Chem. Soc. Faraday Trans. I 84, 993 (1988)

    Article  Google Scholar 

  50. R.A. Barrio, C. Varea, J.L. Aragón, P.K. Maini, Bull. Math. Biol. 61, 483 (1999)

    Article  Google Scholar 

  51. J.L. Aragón, M. Torres, D. Gil, R.A. Barrio, P.K. Maini, Phys. Rev. E 65, 051913 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  52. R.A. Barrio, R.E. Baker, B. Vaughan Jr., K. Tribuzy, M.R. de Carvalho, R. Bassanezi, P.K. Maini, Phys. Rev. E 79, 031908 (2009)

    Article  ADS  Google Scholar 

  53. S.S. Riaz, R. Sharma, S.P. Bhattacharyya, D.S. Ray, J. Chem. Phys. 127, 064503 (2007)

    Article  ADS  Google Scholar 

  54. S. Sen, P. Ghosh, S.S. Riaz, D.S. Ray, Phys. Rev. E 80, 046212 (2009)

    Article  ADS  Google Scholar 

  55. Computational cell biology, edited by C.P. Fall, E.S. Marland, J.M. Wagner, J.J. Tyson (Springer-Verlag, New York, 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deb Shankar Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Ray, D. Liénard-type chemical oscillator. Eur. Phys. J. B 87, 65 (2014). https://doi.org/10.1140/epjb/e2014-41070-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-41070-1

Keywords

Navigation