Skip to main content
Log in

Spectra of delay-coupled heterogeneous noisy nonlinear oscillators

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Nonlinear oscillators that are subject to noise and delayed interaction have been used to describe a number of dynamical phenomena in Physics and beyond. Here we study the spectral statistics (power and cross-spectral densities) of a small number of noisy nonlinear oscillators and derive analytical approximations for these spectra. In our paper, individual oscillators are described by the normal form of a supercritical or subcritical Hopf bifurcation supplemented by Gaussian white noise. Oscillators can be distinguished from each other by their frequency, bifurcation parameter, and noise intensity. Extending previous results from the literature, we first calculate in linear response theory the power spectral density and response function of the single oscillator in both super- and subcritical parameter regime and test them against numerical simulations. For small heterogeneous groups of oscillators (N = 2 or 3), which are coupled by a delayed linear term, we use a linear response ansatz to derive approximations for the power and cross-spectral densities of the oscillators within this small network. These approximations are confirmed by comparison with extensive numerical simulations. Using the theory we relate the peaks in the spectra of the homogeneous system (identical oscillators) to periodic solutions of the deterministic (noiseless) system. For two delay-coupled subcritical Hopf oscillators, we show that the coupling can enhance the coherence resonance effect, which is known to occur for the single subcritical oscillator. In the case of heterogeneous oscillators, we find that the delay-induced characteristic profile of the spectra is conserved for moderate frequency detuning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.C. Soriano, J. García-Ojalvo, C.R. Mirasso, I. Fischer, Rev. Mod. Phys. 85, 421 (2013)

    ADS  Google Scholar 

  2. N. Brunel, V. Hakim, Chaos 18, 015113 (2008)

    ADS  MathSciNet  Google Scholar 

  3. S. Ares, L.G. Morelli, D.J. Jörg, A.C. Oates, F. Jülicher, Phys. Rev. Lett. 108, 204101 (2012)

    ADS  Google Scholar 

  4. S. Yanchuk, P. Perlikowski, Phys. Rev. E 79, 046221 (2009)

    ADS  MathSciNet  Google Scholar 

  5. O. D’Huys, R. Vicente, T. Erneux, J. Danckaert, I. Fischer, Chaos 18, 037116 (2008)

    ADS  MathSciNet  Google Scholar 

  6. C.U. Choe, T. Dahms, P. Hövel, E. Schöll, Phys. Rev. E 81, 025205(R) (2010)

    ADS  Google Scholar 

  7. R. Vicente, L.L. Gollo, C.R. Mirasso, I. Fischer, P. Gordon, Proc. Natl. Acad. Sci. USA 105, 17157 (2008)

    ADS  Google Scholar 

  8. G. Hu, T. Ditzinger, C.Z. Ning, H. Haken, Phys. Rev. Lett. 71, 807 (1993)

    ADS  Google Scholar 

  9. A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)

    ADS  MATH  MathSciNet  Google Scholar 

  10. A. Neiman, P.I. Saparin, L. Stone, Phys. Rev. E 56, 270 (1997)

    ADS  Google Scholar 

  11. B. Lindner, J. García-Ojalvo, A. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004)

    ADS  Google Scholar 

  12. O.V. Ushakov, H.J. Wünsche, F. Henneberger, I.A. Khovanov, L. Schimansky-Geier, M.A. Zaks, Phys. Rev. Lett. 95, 123903 (2005)

    ADS  Google Scholar 

  13. A. Zakharova, T. Vadivasova, V. Anishchenko, A. Koseska, J. Kurths, Phys. Rev. E 81, 011106 (2010)

    ADS  Google Scholar 

  14. A. Zakharova, A. Feoktistov, T. Vadivasova, E. Schöll, Eur. Phys. J. Special Topics 222, 2481 (2013)

    ADS  Google Scholar 

  15. N.B. Janson, A.G. Balanov, E. Schöll, Phys. Rev. Lett. 93, 010601 (2004)

    ADS  Google Scholar 

  16. G. Stegemann, A.G. Balanov, E. Schöll, Phys. Rev. E 73, 016203 (2006)

    ADS  Google Scholar 

  17. B. Hauschildt, N.B. Janson, A.G. Balanov, E. Schöll, Phys. Rev. E 74, 051906 (2006)

    ADS  MathSciNet  Google Scholar 

  18. S.A. Brandstetter, M.A. Dahlem, E. Schöll, Phil. Trans. R. Soc. A 368, 391 (2010)

    ADS  MATH  Google Scholar 

  19. F. Jülicher, K. Dierkes, B. Lindner, J. Prost, P. Martin, Eur. Phys. J. E 29, 449 (2009)

    Google Scholar 

  20. B. Doiron, B. Lindner, A. Longtin, L. Maler, J. Bastian, Phys. Rev. Lett. 93, 048101 (2004)

    ADS  Google Scholar 

  21. B. Lindner, B. Doiron, A. Longtin, Phys. Rev. E 72, 061919 (2005)

    ADS  MathSciNet  Google Scholar 

  22. J. Trousdale, Y. Hu, E. Shea-Brown, K. Josić, PLoS Comp. Biol. 8, 1 (2012)

    Google Scholar 

  23. N. Sharafi, J. Benda, B. Lindner, J. Comp. Neurosci. 34, 285 (2013)

    MATH  MathSciNet  Google Scholar 

  24. V. Flunkert, E. Schöll, Phys. Rev. E 76, 066202 (2007)

    ADS  Google Scholar 

  25. S. Wieczorek, B. Krauskopf, T. Simpson, D. Lenstra, Phys. Rep. 416, 1 (2005)

    ADS  Google Scholar 

  26. R.J. Olsen, I.R. Epstein, J. Chem. Phys. 98, 2805 (1993)

    ADS  Google Scholar 

  27. J. Kosek, P.G. Sorensen, M. Marek, F. Hynne, J. Phys. Chem. 98, 6128 (1994)

    Google Scholar 

  28. R. FitzHugh, Biophys. J. 1, 445 (1961)

    ADS  Google Scholar 

  29. T. Kostova, R. Ravindran, M. Schonbek, Int. J. Bifurc. Chaos 14, 913 (2004)

    MATH  MathSciNet  Google Scholar 

  30. K. Tsumoto, K. Kitayama, T. Yoshinaga, K. Aihara, H. Kawakami, Neurocomputing 69, 293 (2006)

    Google Scholar 

  31. Y. Choe, M.O. Magnasco, A.J. Hudspeth, Proc. Natl. Acad. Sci. USA 95, 1532 (1998)

    Google Scholar 

  32. A.J. Hudspeth, Neuron 59, 530 (2008)

    Google Scholar 

  33. D.A. Arroyo-Almanza, A.N. Pisarchik, I. Fischer, C.R. Mirasso, M.C. Soriano, Opt. Commun. 301-302, 67 (2013)

    ADS  Google Scholar 

  34. S.A. Campbell, Handbook of Brain Connectivity (Springer-Verlag, Berlin, 2007)

  35. N. Bleistein, R.A. Handelsman, Asymptotic Expansions of Integrals (Dover Publications, New York, 2010)

  36. B. Lindner, K. Dierkes, F. Jülicher, Phys. Rev. Lett. 103, 250601 (2009)

    ADS  Google Scholar 

  37. A.G. Balanov, N.B. Janson, E. Schöll, Physica D 199, 1 (2004)

    ADS  MATH  Google Scholar 

  38. J. Pomplun, A. Amann, E. Schöll, Europhys. Lett. 71, 366 (2005)

    ADS  MathSciNet  Google Scholar 

  39. Y.-Y. Liu, G.-Q. Xia, T. Deng, Y. He, Z.-M. Wu, J. Optoel. Adv. Mater. 13, 613 (2011)

    Google Scholar 

  40. Y. Aviad, I. Reidler, M. Zigzag, M. Rosenbluh, I. Kanter, Opt. Express 20, 4352 (2012)

    ADS  Google Scholar 

  41. A. Vilfan, T. Duke, Biophys. J. 95, 4622 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Vüllings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vüllings, A., Schöll, E. & Lindner, B. Spectra of delay-coupled heterogeneous noisy nonlinear oscillators. Eur. Phys. J. B 87, 31 (2014). https://doi.org/10.1140/epjb/e2014-41064-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-41064-y

Keywords

Navigation