Skip to main content
Log in

Numerical analysis of percolation cluster size distribution in two-dimensional and three-dimensional lattices

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

To investigate the statistical behavior in the sizes of finite clusters for percolation, cluster size distribution n s (p) for site and bond percolations at different lattices and dimensions was simulated using a modified algorithm. An equation to approximate the finite cluster size distribution n s (p) was obtained and expressed as: log (n s (p)) = asb log s + c. Based on the analysis of simulation data, we found that the equation is valid for p from 0 to 1 on site and for the bond percolation of two-dimensional (2D) and three-dimensional (3D) lattices. Furthermore, the relationship between the coefficients of the equation and the occupied ratio p was studied using the finite-size scaling method. When \(x = D(p - p_c )L^{y_t }\), p < p c , and D was a nonuniversal metric factor. a was found to be related only to p, and the a-x curves of different lattices were nearly overlapped; b was related to the dimensions and p, and the scaled data of the b of all lattices with the same dimension tended to fall on the same curves. Unlike a and b, c apparently had a quadratic relation with x in 2D lattices and linear relation with x in 3D lattices. The results of this paper could significantly reduce the amount of tasks required to obtain numerical data of on the cluster size distribution for p from 0 to p c .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.R. Broadbent, J.M. Hammersley, Percolation Processes 53, 629 (1957)

    MATH  MathSciNet  Google Scholar 

  2. D. Wilkinson, J.F. Willemsen, J. Phys. A 16, 3365 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Rosso, J.F. Gouyet, B. Sapoval, Phys. Rev. Lett. 57, 3195 (1986)

    Article  ADS  Google Scholar 

  4. C. Chen, H. Park, M. den Nijs, Phys. Rev. E 60, 2496 (1999)

    Article  ADS  Google Scholar 

  5. A. Coniglio, J. Phys. A 12, 545 (1979)

    Article  ADS  Google Scholar 

  6. L. Flandin et al., Phys. Rev. B 59, 14349 (1999)

    Article  ADS  Google Scholar 

  7. W. Dieterich et al., Physica A 266, 229 (1999)

    Article  ADS  Google Scholar 

  8. S. Ugur, O. Yargi, O. Pekcan, Can. J. Chem. 88, 267 (2010)

    Article  Google Scholar 

  9. P.S. Grinchuk, Physica B 338, 252 (2003)

    Article  ADS  Google Scholar 

  10. P.S. Grinchuk, O.S. Rabinovich, Combustion, Explosion and Shock Waves 40, 408 (2004)

    Article  Google Scholar 

  11. Y. Barbotteau, J.L. Irigaray, J.F. Mathiot, Phys. Med. Biol. 48, 3611 (2003)

    Article  Google Scholar 

  12. S. Solomon et al., Physica A 277, 239 (2000)

    Article  ADS  Google Scholar 

  13. P. Grinchuk, Phys. Rev. E 75, 41118 (2007)

    Article  ADS  Google Scholar 

  14. M.F. Sykes, M. Glen, J. Phys. A 9, 87 (1976)

    Article  ADS  Google Scholar 

  15. D. Stauffer, Phys. Rev. Lett. 35, 394 (1975)

    Article  ADS  Google Scholar 

  16. D. Stauffer, A. Aharony, Introduction To Percolation Theory (CRC Press, 1994)

  17. G. Parisi, N. Sourlas, Phys. Rev. Lett. 46, 871 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. M.Z. Bazant, Phys. Rev. E 62, 1660 (2000)

    Article  ADS  Google Scholar 

  19. V. Privman, Finite Size Scaling and Numerical Simulation of Statistical Systems (World Scientific Publishing Company, Inc., 1990)

  20. C.K. Hu, C.Y. Lin, J.A. Chen, Phys. Rev. Lett. 75, 193 (1995)

    Article  ADS  Google Scholar 

  21. M.E. Fisher, V. Privman, Phys. Rev. B 30, 322 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Al-Futaisi, T.W. Patzek, Physica A 321, 665 (2003)

    Article  MATH  ADS  Google Scholar 

  23. C.K. Hu, Phys. Rev. B 46, 6592 (1992)

    Article  ADS  Google Scholar 

  24. C.K. Hu, Phys. Rev. B 51, 3922 (1995)

    Article  ADS  Google Scholar 

  25. X. Feng, Y. Deng, H.W.J. Blöte, Phys. Rev. E 78, 31136 (2008)

    Article  ADS  Google Scholar 

  26. M.F. Sykes, J.W. Essam, J. Math. Phys. 5, 1117 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  27. P.N. Suding, R.M. Ziff, Phys. Rev. E 60, 275 (1999)

    Article  ADS  Google Scholar 

  28. A.M. Becker, R.M. Ziff, Phys. Rev. E 80, 41101 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  29. C.D. Lorenz, R.M. Ziff, Phys. Rev. E 57, 230 (1998)

    Article  ADS  Google Scholar 

  30. C.D. Lorenz, R.M. Ziff, J. Phys. A 31, 8147 (1998)

    Article  MATH  ADS  Google Scholar 

  31. P.S. Grinchuk, Phys. Rev. E 66, 16121 (2002)

    Article  Google Scholar 

  32. F. Duan, J. Guojun, in Introduction to Condensed Matter Physics (World Scientific Publishing Company, 2005), Vol. 1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaolin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, B., Li, C., Zhang, M. et al. Numerical analysis of percolation cluster size distribution in two-dimensional and three-dimensional lattices. Eur. Phys. J. B 87, 179 (2014). https://doi.org/10.1140/epjb/e2014-40996-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-40996-4

Keywords

Navigation