Skip to main content
Log in

Third harmonic generation in quantum dot with Rashba spin orbit interaction

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Here we have investigated the influence of magnetic field and confinement potential on nonlinear optical property, third harmonic generation (THG) of a parabolically confinement quantum dot in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of confining potential, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate that an increase of Rashba spin orbit interaction coefficient produces strong effect on the peak positions of THG. The role of confinement strength and spin orbit interaction strength as control parameters on THG have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Prinz, Science 282, 1660 (1998)

    Article  Google Scholar 

  2. Supriyo Bandyopadhyay, Physics of Nanostructured Solid State Devices (Springer, 2012)

  3. M. Kumar, S. Lahon, P.K. Jha, M. Mohan, Superlatt. Microstruct. 57, 11 (2013)

    Article  ADS  Google Scholar 

  4. M. Kumar, S. Lahon, P. Kumar Jha, M. Mohan, Phys. Stat. Sol. B 205, 1585 (2013)

    Article  ADS  Google Scholar 

  5. T.D. Stanescu, S. Tewari, J. Phys.: Condens. Matter 25, 233201 (2013)

    ADS  Google Scholar 

  6. S. Banerjee, D. Charkavorty, J. Mater. Sci. 37, 4261 (2002)

    Article  ADS  Google Scholar 

  7. D.A.B. Miller, Int. J. High Speed Electron. Syst. 1, 19 (1991)

    Article  Google Scholar 

  8. R.F. Kazarinov, R.A. Suris, Sov. Phys. Semicond. 5, 707 (1971)

    Google Scholar 

  9. T.H. Hood, J. Lightwave Technol. 6, 743 (1988)

    Article  ADS  Google Scholar 

  10. Makoto Okano1, Yoshihiko Kanemitsu, Shaoqiang Chen, Toshimitsu Mochizuki, Masahiro Yoshita, Hidefumi Akiyama, L.N. Pfeiffer, K.W. West, Phys. Rev. B 86, 085312 (2012)

    Article  ADS  Google Scholar 

  11. G. Wang, Q. Guo, Physica B 403, 37 (2008)

    Article  ADS  Google Scholar 

  12. M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, I. Sökmen, J. Luminescence 132, 901 (2012)

    Article  ADS  Google Scholar 

  13. H. Yildirim, M. Tomak, Phys. Stat. Sol. B 243, 4057 (2006)

    Article  ADS  Google Scholar 

  14. R. Khordad, B. Mirhosseini, Opt. Commun. 285, 1233 (2012)

    Article  ADS  Google Scholar 

  15. S. Shao, K.X. Guo, Z.H. Zhang, N. Li, C. Peng, Superlatt. Microstruct. 48, 541 (2010)

    Article  ADS  Google Scholar 

  16. G. Wang, Phys. Rev. B 72, 155329 (2005)

    Article  ADS  Google Scholar 

  17. Anchala, S.P. Purohit, K.C. Mathur, J. Appl. Phys. 112, 94306 (2012)

    Article  Google Scholar 

  18. M. Kirak, Y. Altinok, Eur. Phys. J. B 85, 344 (2012)

    Article  ADS  Google Scholar 

  19. Zhi-Hai Zhang, Kang-Xian Guo, Bin Chen, Rui-Zhen Wang, Min-Wu Kang, Superlatt. Microstruct. 46, 672 (2009)

    Article  ADS  Google Scholar 

  20. S. Sauvage et al., Phys. Rev. B 59, 9830 (1991)

    Article  ADS  Google Scholar 

  21. I. Zutic, J. Fabian, S. Das Sharma, Rev. Mod. Phys. 76, 223 (2004)

    Article  ADS  Google Scholar 

  22. Jun-Feng Liu, Zhi-Cheng Zhong, Lei Chen, Dingping Li, Chao Zhang, Zhongshui Ma, Phys. Rev. B 76, 195304 (2007)

    Article  ADS  Google Scholar 

  23. S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990)

    Article  ADS  Google Scholar 

  24. P. Stredaand, P. Seba, Phys. Rev. Lett. 90, 256601 (2003)

    Article  ADS  Google Scholar 

  25. E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)

    Google Scholar 

  26. G. Dresselhaus, Phys. Rev. 100, 580 (1955)

    Article  ADS  MATH  Google Scholar 

  27. D. Grudler, Phys. Rev. Lett. 84, 6074 (2000)

    Article  ADS  Google Scholar 

  28. İ. Karabulut, S. Baskoutas, J. Appl. Phys. 103, 073512 (2008)

    Article  ADS  Google Scholar 

  29. M. Kırak, S. Yılmaz, M. Şahin, M. Gençaslan, J. Appl. Phys. 109, 094309 (2011)

    Article  Google Scholar 

  30. L. Jacak, P. Hawrylak, A. Wojs, Quantum Dots (Springer, Berlin, 1997)

  31. O. Voskoboynikov, C.P. Lee, O. Tretyak, Phys. Rev. B 63, 165306 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Gumber, S., Lahon, S. et al. Third harmonic generation in quantum dot with Rashba spin orbit interaction. Eur. Phys. J. B 87, 71 (2014). https://doi.org/10.1140/epjb/e2014-40922-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-40922-x

Keywords

Navigation