Skip to main content
Log in

Approach to equilibrium of a nondegenerate quantum system: decay of oscillations and detailed balance as separate effects of a reservoir

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The approach to equilibrium of a nondegenerate quantum system involves the damping of microscopic population oscillations, and, additionally, the bringing about of detailed balance, i.e. the achievement of the correct Boltzmann factors relating the populations. These two are separate effects of interaction with a reservoir. One stems from the randomization of phases and the other from phase space considerations. Even the meaning of the word ‘phase’ differs drastically in the two instances in which it appears in the previous statement. In the first case it normally refers to quantum phases whereas in the second it describes the multiplicity of reservoir states that corresponds to each system state. The generalized master equation theory for the time evolution of such systems is here developed in a transparent manner and both effects of reservoir interactions are addressed in a unified fashion. The formalism is illustrated in simple cases including in the standard spin-boson situation wherein a quantum dimer is in interaction with a bath consisting of harmonic oscillators. The theory has been constructed for application in energy transfer in molecular aggregates and in photosynthetic reaction centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Knox, Excitation energy transfer and migration: Theoretical considerations in Bioenergetics of Photosynthesis (Academic Press, New York, 1975)

  2. R.V. Grondelle, J. Amesz, Excitation energy transfer in photosynthetic systems in Light Emission by Plants and Bacteria (Academic Press, New York, 1986)

  3. G. Govindjee, R. Govindjee, Sci. Am. 231, 68 (1974)

    Google Scholar 

  4. R.K. Clayton, J. Theor. Biol. 14, 173 (1967)

    Article  Google Scholar 

  5. R.K. Clayton, Photosynthesis Physical Mechanisms and Chemical Patterns, (Cambridge University Press, 1980)

  6. E. Collini, C.Y. Wong, K.E. Wilk, P.M.G. Curmi, P. Brumer, G.D. Scholes, Nature 463, 644 (2010)

    Article  ADS  Google Scholar 

  7. A. Ishizaki, G.R. Fleming, Proc. Natl. Acad. Sci. 106, 17255 (2009)

    Article  ADS  Google Scholar 

  8. T. Förster, Ann. Phys. 437, 55 (1948)

    Article  Google Scholar 

  9. V.M. Kenkre, R.S. Knox, Phys. Rev. B 9, 5279 (1974)

    Article  ADS  Google Scholar 

  10. M. Grover, R. Silbey, J. Chem. Phys. 54, 4843 (1971)

    Article  ADS  Google Scholar 

  11. I.I. Abram, R. Silbey, J. Chem. Phys. 63, 2317 (1975)

    Article  ADS  Google Scholar 

  12. S. Rackovsky, R. Silbey, Mol. Phys. 25, 61 (1973)

    Article  ADS  Google Scholar 

  13. V.M. Kenkre, Phys. Rev. B 11, 1741 (1975)

    Article  ADS  Google Scholar 

  14. V.M. Kenkre, Phys. Rev. B 12, 2150 (1975)

    Article  ADS  Google Scholar 

  15. R. Zwanzig, Statistical Mechanics of Irreversibility in lectures in Theoretical Physics (Interscience Publisher New york, 1961), Vol. 3

  16. R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, 2001)

  17. V.M. Kenkre, in Stastical Mechanics and Statistical Methods in Theory and Application, edited by U. Landman (Plenum, New York, 1977), pp. 441–461

  18. V.M. Kenkre, T.S. Rahman, Phys. Lett. A 50, 170 (1974)

    Article  ADS  Google Scholar 

  19. V.M. Kenkre, AIP Conf. Proc. 658, 63 (2003)

    Article  ADS  Google Scholar 

  20. M. Bonitz, D. Kremp, D.C. Scott, R. Binder, W.D. Kraeft, H.S. Köhler, J. Phys. Condens. Matter 8, 6057 (1996)

    Article  ADS  Google Scholar 

  21. D. Kremp, M. Bonitz, W.D. Kraeft, M. Schlanges, Ann. Phys. 258, 320 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. M. Moeckel, S. Kehrein, New J. Phys. 12, 055016 (2010)

    Article  ADS  Google Scholar 

  23. M. Kollar, F.A. Wolf, M. Eckstein, Phys. Rev. B 84, 054304 (2011)

    Article  ADS  Google Scholar 

  24. S. Genway, A.F. Ho, D.K.K. Lee, Phys. Rev. Lett. 111, 130408 (2013)

    Article  ADS  Google Scholar 

  25. S. Goldstein, T. Hara, H. Tasaki, Phys. Rev. Lett. 111, 140401 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tiwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, M., Kenkre, V. Approach to equilibrium of a nondegenerate quantum system: decay of oscillations and detailed balance as separate effects of a reservoir. Eur. Phys. J. B 87, 86 (2014). https://doi.org/10.1140/epjb/e2014-40891-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-40891-0

Keywords

Navigation