Skip to main content
Log in

Change of network load due to node removal

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The interplay between topology changes and the redistribution of traffic plays a significant role in many real-world networks. In this paper we study how the load of the remaining network changes when nodes are removed. This removal operation can model attacks and errors in networks, or the planned control of network topology. We consider a scenario similar to the data communication networks, and measure the load of a node by its betweenness centrality. By analysis and simulations, we show that when a single node is removed, the change of the remaining network’s load is positively correlated with the degree of the removed node. In multiple-node removal, by comparing several node removal schemes, we show in detail how significantly different the change of the remaining network’s load will be between starting the removal from small degree/betweenness nodes and from large degree/betweenness nodes. Moreover, when starting the removal from small degree/betweenness nodes, we not only observe that the remaining network’s load decreases, which is consistent with previous studies, but also find that the load of hubs keeps decreasing. These results help us to make a deeper understanding about the dynamics after topology changes, and are useful in planned control of network topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sachtjen, B. Carreras, V. Lynch, Phys. Rev. E 61, 4877 (2000)

    Article  ADS  Google Scholar 

  2. R. Kinney, P. Crucitti, R. Albert, V. Latora, Eur. Phys. J. B 46, 101 (2005)

    Article  ADS  Google Scholar 

  3. X. Huang, I. Vodenska, S. Havlin, H.E. Stanley, Sci. Rep. 3, 1219 (2013)

    ADS  Google Scholar 

  4. C. Borrvall, B. Ebenman, T. Jonsson, Ecol. Lett. 3, 131 (2000)

    Article  Google Scholar 

  5. P. Holme, B.J. Kim, Phys. Rev. E 65, 066109 (2002)

    Article  ADS  Google Scholar 

  6. A.E. Motter, Y.C. Lai, Phys. Rev. E 66, 065102 (2002)

    Article  ADS  Google Scholar 

  7. Y. Moreno, J. Gómez, A. Pacheco, Europhys. Lett. 58, 630 (2002)

    Article  ADS  Google Scholar 

  8. Y. Moreno, R. Pastor-Satorras, A. Vázquez, A. Vespignani, Europhys. Lett. 62, 292 (2003)

    Article  ADS  Google Scholar 

  9. J. Wang, L. Rong, L. Zhang, Z. Zhang, Physica A 387, 6671 (2008)

    Article  ADS  Google Scholar 

  10. F. Tan, Y. Xia, W. Zhang, X. Jin, Europhys. Lett. 102, 28009 (2013)

    Article  ADS  Google Scholar 

  11. Y. Xia, J. Fan, D. Hill, Physica A 389, 1281 (2010)

    Article  ADS  Google Scholar 

  12. L.C. Freeman, Sociometry 40, 35 (1977)

    Article  Google Scholar 

  13. K.I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701 (2001)

    Article  ADS  Google Scholar 

  14. J.H. Chang, L. Tassiulas, Energy conserving routing in wireless ad-hoc networks, in INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE (IEEE, 2000), Vol. 1, pp. 22–31

  15. J. Yick, B. Mukherjee, D. Ghosal, Comput. Netw. 52, 2292 (2008)

    Article  Google Scholar 

  16. M. Li, B. Yang, A survey on topology issues in wireless sensor network, in Proceedings of the International Conference on Wireless Networks (2006)

  17. U. Brandes, J. Math. Soc. 25, 163 (2001)

    Article  MATH  Google Scholar 

  18. M. Barthelemy, Eur. Phys. J. B 38, 163 (2004)

    Article  ADS  Google Scholar 

  19. J.A. Hołyst, J. Sienkiewicz, A. Fronczak, P. Fronczak, K. Suchecki, Phys. Rev. E 72, 026108 (2005)

    Article  ADS  Google Scholar 

  20. P. Erdős, A. Rényi, Publ. Math. Inst. Hungar. Acad. Sci. 5, 17 (1960)

    Google Scholar 

  21. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  22. A.L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  23. Q. Cao, T. Abdelzaher, T. He, J. Stankovic, Towards optimal sleep scheduling in sensor networks for rare-event detection, in Proceedings of the 4th international symposium on Information processing in sensor networks (IEEE Press, 2005), p. 4

  24. A.E. Motter, Phys. Rev. Lett. 93, 098701 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, B., Jin, X., Xia, Y. et al. Change of network load due to node removal. Eur. Phys. J. B 87, 52 (2014). https://doi.org/10.1140/epjb/e2014-40723-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-40723-3

Keywords

Navigation