Skip to main content
Log in

The hydrogenation-dependent thermal expansion properties of hydrogenated graphene

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Thermal expansion properties of hydrogenated graphene are investigated by performing the first-principles calculations. We find that both fully hydrogenated graphene (graphane) and half hydrogenated graphene (graphone) exhibit negative thermal expansion properties at low temperatures. Their thermal expansion behaviors display the hydrogenation-dependent features: hydrogenated graphene with boat-like structures possess better negative thermal expansion properties than those with chair-like structures. In particular, the graphane with boat-like structure shows giant negative thermal expansion, with thermal expansion coefficient of about −4.1 × 10-5 K-1. Such different thermal behaviors are ascribed to different vibrational features, and the typical modes contributing to the negative thermal properties of the systems are addressed. Our results will be of importance for both fundamental understanding and the application of this family in nanodevices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, V. Grigoreva, S.V. Dubonos, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  3. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  ADS  Google Scholar 

  4. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  5. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  6. A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  7. A. Rycerz, J. Tworzydlo, C.W.J. Beenakker, Nat. Phys. 3, 172 (2007)

    Article  Google Scholar 

  8. L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Science 320, 356 (2008)

    Article  ADS  Google Scholar 

  9. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Phys. Rev. Lett. 100, 206803 (2008)

    Article  ADS  Google Scholar 

  10. Y.-M. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, P. Avouris, Nano Lett. 9, 422 (2009)

    Article  ADS  Google Scholar 

  11. P. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotechnol. 2, 605 (2007)

    Article  ADS  Google Scholar 

  12. F. Liu et al., Adv. Mater. 24, 1089 (2012)

    Article  Google Scholar 

  13. J. Hu, J. Alicea, R.Q. Wu, M. Franz, Phys. Rev. Lett. 109, 266801 (2012)

    Article  ADS  Google Scholar 

  14. A.V. Tyurnina, K. Tsukagoshi, H. Hiura, A.N. Obraztsov, Carbon 52, 49 (2013)

    Article  Google Scholar 

  15. X.S. Wu, M. Sprinkle, X.B. Li, F. Ming, C. Berger, W.A. de Heer, Phys. Rev. Lett. 101, 026801 (2008)

    Article  ADS  Google Scholar 

  16. I. Jung, D.A. Dikin, R.D. Piner, R.S. Ruoff, Nano Lett. 8, 4283 (2008)

    Article  ADS  Google Scholar 

  17. J.A. Yan, L.D. Xian, M.Y. Chou, Phys. Rev. Lett. 103, 086802 (2009)

    Article  ADS  Google Scholar 

  18. S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, Nano Lett. 7, 3394 (2007)

    Article  ADS  Google Scholar 

  19. J.O. Sofo, A.S. Chardhari, G.D. Barber, Phys. Rev. B 75, 153401 (2007)

    Article  ADS  Google Scholar 

  20. D.C. Elias et al., Science 323, 610 (2009)

    Article  ADS  Google Scholar 

  21. J. Zhou, Q. Wang, Q. Sun, X.S. Chen, Y. Kawazoe, P. Jena, Nano Lett. 9, 3867 (2009)

    Article  Google Scholar 

  22. F.W. Averill, J.R. Morris, Phys. Rev. B 84, 035411 (2011)

    Article  ADS  Google Scholar 

  23. G. Savini, A.C. Ferrari, F. Giustino, Phys. Rev. Lett. 105, 037002 (2010)

    Article  ADS  Google Scholar 

  24. S. Lebegue, M. Klintenberg, O. Eriksson, M.I. Katsnelson, Phys. Rev. B 79, 245117 (2009)

    Article  ADS  Google Scholar 

  25. B.S. Pujari, S. Gusarov, M. Brett, A. Kovalenko, Phys. Rev. B 84, 041402 (2011)

    Article  ADS  Google Scholar 

  26. H. Gao, L. Wang, J. Zhao, F. Ding, J. Lu, J. Phys. Chem. C 115, 3236 (2011)

    Article  Google Scholar 

  27. A.S. Barnard, I.K. Snook, J. Mater. Chem. 20, 10459 (2010)

    Article  Google Scholar 

  28. M.Z.S. Flores, P.A.S. Autreto, S.B. Legoas, D.S. Galvao, Nanotechnology 20, 465704 (2009)

    Article  ADS  Google Scholar 

  29. M.H. Wu, X.J. Wu, Y. Gao, X.C. Zeng, J. Phys. Chem. C 114, 139 (2010)

    Article  Google Scholar 

  30. R. Balog et al., Nat. Mater. 9, 315 (2010)

    Article  ADS  Google Scholar 

  31. C.D. Reddy, Y.W. Zhang, V.B. Shenoy, Nanotechnology 23, 165303 (2012)

    Article  ADS  Google Scholar 

  32. W. Zou, Z.Z. Yu, C.X. Zhang, J.X. Zhong, L.Z. Sun, Appl. Phys. Lett. 100, 103109 (2012)

    Article  ADS  Google Scholar 

  33. W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau, Nat. Nanotechnol. 4, 562 (2009)

    Article  ADS  Google Scholar 

  34. J.W. Jiang, J.S. Wang, B.W. Li, Phys. Rev. B 80, 205429 (2009)

    Article  ADS  Google Scholar 

  35. H.J. Shen, Micro and Nano Lett. 8, 740 (2013)

    Article  Google Scholar 

  36. X.H. Zhou, Y. Huang, X.S. Chen, W. Lu, Solid State Commun. 157, 24 (2013)

    Article  ADS  Google Scholar 

  37. H. Peelaers, A.D. Hernandez-Nieves, O. Leenaerts, B. Partoens, F.M. Peeters, Appl. Phys. Lett. 98, 051914 (2011)

    Article  ADS  Google Scholar 

  38. D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 453 (1997)

    Article  Google Scholar 

  39. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  40. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  41. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002) and references therein

    ADS  Google Scholar 

  42. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  43. M.T. Yin, M.L. Cohen, Phys. Rev. B 26, 3259 (1982)

    Article  ADS  Google Scholar 

  44. K. Wang, R.R. Reeber, Appl. Phys. Lett. 76, 2203 (2000)

    Article  ADS  Google Scholar 

  45. E. Grüneisen, Hanbuch der Physik 10, 1 (1926)

    Google Scholar 

  46. T.H.K. Barron, Philos. Mag. 46, 720 (1955)

    Google Scholar 

  47. G.D. Barrera, J.A.O. Bruno, T.H.K. Barron, N.L. Allan, J. Phys.: Condens. Matter 17, R217 (2005)

    ADS  Google Scholar 

  48. T.M.G. Mohiuddin et al., Phys. Rev. B 79, 205433 (2009)

    Article  ADS  Google Scholar 

  49. D.M. Basko, S. Piscanec, A.C. Ferrari, Phys. Rev. B 80, 165413 (2009)

    Article  ADS  Google Scholar 

  50. B. Kelly, Physics of Graphite (Applied Science, Englewood, 1981)

  51. I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, J. Vac. Sci. Thechnol. B 25, 2558 (2007)

    Article  Google Scholar 

  52. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, H., Pan, B. The hydrogenation-dependent thermal expansion properties of hydrogenated graphene. Eur. Phys. J. B 87, 40 (2014). https://doi.org/10.1140/epjb/e2014-40661-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-40661-0

Keywords

Navigation