Skip to main content
Log in

The Hubbard model beyond the two-pole approximation: a composite operator method study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Within the framework of the Composite Operator Method, a three-pole solution for the two-dimensional Hubbard model is presented and analyzed in detail. In addition to the two Hubbard operators, the operatorial basis comprises a third operator describing electronic transitions dressed by nearest-neighbor spin fluctuations. These latter, compared to charge and pair fluctuations, are assumed to be preeminent in the region of model-parameter space — small doping, low temperature and large on-site Coulomb repulsion — where one expects strong electronic correlations to dominate the physics of the system. This assumption and the consequent choice for the basic field, as well as the whole analytical approximation framework, have been validated through a comprehensive comparison with data for local and single-particle properties obtained by different numerical methods on varying all model parameters. The results systematically agree, both quantitatively and qualitatively, up to coincide in many cases. Many relevant features of the model, reflected by the numerical data, are exactly caught by the proposed solution and, in particular, the crossover between weak and intermediate-strong correlations as well as the shape of the occupied portion of the dispersion. A comprehensive comparison with other n-pole solutions is also reported in order to explore and possibly understand the reasons of such good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963)

    ADS  Google Scholar 

  2. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    ADS  Google Scholar 

  3. J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986)

    ADS  Google Scholar 

  4. P.W. Anderson, Science 235, 1196 (1987)

    ADS  Google Scholar 

  5. H. Alloul, T. Ohno, P. Mendels, Phys. Rev. Lett. 63, 1700 (1989)

    ADS  Google Scholar 

  6. T. Timusk, B. Statt, Rep. Prog. Phys. 62, 61 (1999)

    ADS  Google Scholar 

  7. D.N. Basov, S.I. Woods, A.S. Katz, E.J. Singley, R.C. Dynes, M. Xu, D.G. Hinks, C.C. Homes, M. Strongin, Science 283, 49 (1999)

    ADS  Google Scholar 

  8. J. Orenstein, A.J. Millis, Science 288, 468 (2000)

    ADS  Google Scholar 

  9. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    ADS  Google Scholar 

  10. K.M. Shen et al., Science 307, 901 (2005)

    ADS  Google Scholar 

  11. M. Eschrig, Adv. Phys. 55, 47 (2006)

    ADS  Google Scholar 

  12. A. Kanigel et al., Nat. Phys. 2, 447 (2006)

    Google Scholar 

  13. P.A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006)

    ADS  Google Scholar 

  14. T. Valla, A.V. Fedorov, J. Lee, J.C. Davis, G.D. Gu, Science 314, 1914 (2006)

    ADS  Google Scholar 

  15. N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R.X. Liang, D.A. Bonn, W.N. Hardy, L. Taillefer, Nature 447, 565 (2007)

    ADS  Google Scholar 

  16. D. LeBoeuf et al., Nature 450, 533 (2007)

    ADS  Google Scholar 

  17. A.F. Bangura et al., Phys. Rev. Lett. 100, 047004 (2008)

    ADS  Google Scholar 

  18. M.A. Hossain et al., Nat. Phys. 4, 527 (2008)

    Google Scholar 

  19. E.A. Yelland, J. Singleton, C.H. Mielke, N. Harrison, F.F. Balakirev, B. Dabrowski, J.R. Cooper, Phys. Rev. Lett. 100, 047003 (2008)

    ADS  Google Scholar 

  20. S.E. Sebastian, N. Harrison, E. Palm, T.P. Murphy, C.H. Mielke, R.X. Liang, D.A. Bonn, W.N. Hardy, G.G. Lonzarich, Nature 454, 200 (2008)

    ADS  Google Scholar 

  21. A. Audouard, C. Jaudet, D. Vignolles, R.X. Liang, D.A. Bonn, W.N. Hardy, L. Taillefer, C. Proust, Phys. Rev. Lett. 103, 157003 (2009)

    ADS  Google Scholar 

  22. J.Q. Meng et al., Nature 462, 335 (2009)

    ADS  Google Scholar 

  23. H. Anzai et al., Phys. Rev. Lett. 105, 227002 (2010)

    ADS  Google Scholar 

  24. J. Singleton et al., Phys. Rev. Lett. 104, 086403 (2010)

    ADS  Google Scholar 

  25. S.E. Sebastian, N. Harrison, C.H. Altarawneh, R.X. Liang, D.A. Bonn, W.N. Hardy, G.G. Lonzarich, Phys. Rev. B 81, 140505 (2010)

    ADS  Google Scholar 

  26. S.E. Sebastian, N. Harrison, M.M. Altarawneh, P.A. Goddard, C.H. Mielke, R.X. Liang, D.A. Bonn, W.N. Hardy, G.G. Lonzarich, Phys. Rev. B 81, 140505 (2010)

    ADS  Google Scholar 

  27. S.E. Sebastian, N. Harrison, M.M. Altarawneh, C.H. Mielke, R.X. Liang, D.A. Bonn, W.N. Hardy, G.G. Lonzarich, Proc. Natl. Acad. Sci. USA 107, 6175 (2010)

    ADS  Google Scholar 

  28. J.M. Tranquada, D.N. Basov, A.D. LaForge, A.A. Schafgans, Phys. Rev. B 81, 060506 (2010)

    ADS  Google Scholar 

  29. I.M. Vishik et al., Phys. Rev. Lett. 104, 207002 (2010)

    ADS  Google Scholar 

  30. P.D.C. King et al., Phys. Rev. Lett. 106, 127005 (2011)

    ADS  Google Scholar 

  31. F. Laliberté et al., Nat. Commun. 2, 432 (2011)

    ADS  Google Scholar 

  32. B.J. Ramshaw, B. Vignolle, J. Day, R.X. Liang, W.N. Hardy, C. Proust, D.A. Bonn, Nat. Phys. 7, 234 (2011)

    Google Scholar 

  33. S.C. Riggs, O. Vafek, J.B. Kemper, J.B. Betts, A. Migliori, F.F. Balakirev, W.N. Hardy, R.X. Liang, D.A. Bonn, G.S. Boebinger, Nat. Phys. 7, 332 (2011)

    Google Scholar 

  34. S.E. Sebastian, N. Harrison, M.M. Altarawneh, F.F. Balakirev, C.H. Mielke, R. Liang, D.A. Bonn, W.N. Hardy, G.G. Lonzarich, arXiv:1103.4178 (2011)

  35. S.E. Sebastian, N. Harrison, M.M. Altarawneh, R. Liang, D.A. Bonn, W.N. Hardy, G.G. Lonzarich, Nat. Commun. 2, 471 (2011)

    ADS  Google Scholar 

  36. S.E. Sebastian, N. Harrison, G.G. Lonzarich, Phil. Trans. R. Soc. London A 369, 1687 (2011)

    ADS  Google Scholar 

  37. B. Vignolle et al., C.R. Phys. 12, 446 (2011)

    ADS  Google Scholar 

  38. S.E. Sebastian, N. Harrison, R. Liang, D.A. Bonn, W.N. Hardy, C. Mielke, G.G. Lonzarich, Phys. Rev. Lett. 108, 196403 (2012)

    ADS  Google Scholar 

  39. S.E. Sebastian, N. Harrison, G.G. Lonzarich, Rep. Prog. Phys. 75, 102501 (2012)

    ADS  Google Scholar 

  40. A.-M.S. Tremblay, B. Kyung, D. Sénéchal, Fizika Nizkikh Temperatur 32, 561 (2006) [Low Temp. Phys. 32, 424 (2006)]

    Google Scholar 

  41. Strongly Correlated Systems: Numerical Methods, in Springer Series in Solid-State Sciences, edited by A. Avella, F. Mancini (Springer, Berlin, Heidelberg, 2013), Vol. 176

  42. Strongly Correlated Systems: Theoretical Methods, in Springer Series in Solid-State Sciences, edited by A. Avella, F. Mancini (Springer, Berlin, Heidelberg, 2012), Vol. 171

  43. H. Mori, Prog. Theor. Phys. 33, 423 (1965)

    ADS  MATH  Google Scholar 

  44. J. Hubbard, Proc. Roy. Soc. A 277, 237 (1964)

    ADS  Google Scholar 

  45. J. Hubbard, Proc. Roy. Soc. A 281, 401 (1964)

    ADS  Google Scholar 

  46. D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968)

    ADS  Google Scholar 

  47. L.M. Roth, Phys. Rev. 184, 451 (1969)

    ADS  Google Scholar 

  48. Y.A. Tserkovnikov, Teor. Mat. Fiz. 49, 219 (1981)

    MathSciNet  Google Scholar 

  49. Y.A. Tserkovnikov, Teor. Mat. Fiz. 50, 261 (1981)

    MathSciNet  Google Scholar 

  50. M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963)

    ADS  Google Scholar 

  51. M.C. Gutzwiller, Phys. Rev. 134, A923 (1964)

    ADS  Google Scholar 

  52. M.C. Gutzwiller, Phys. Rev. 137, A1726 (1965)

    ADS  MathSciNet  Google Scholar 

  53. W.F. Brinkman, T.M. Rice, Phys. Rev. B 2, 4302 (1970)

    ADS  Google Scholar 

  54. H. Yokoyama, H. Shiba, J. Phys. Soc. Jpn 56, 1490 (1987)

    ADS  Google Scholar 

  55. Z. Gulácsi, R. Strack, D. Vollhardt, Phys. Rev. B 47, 8594 (1993)

    ADS  Google Scholar 

  56. J. Bünemann, W. Weber, Phys. Rev. B 55, 4011 (1997)

    ADS  Google Scholar 

  57. M. Dzierzawa, D. Baeriswyl, S. Martelo, Helv. Phys. Acta 70, 124 (1997)

    MATH  Google Scholar 

  58. J. Bünemann, W. Weber, F. Gebhard, Phys. Rev. B 57, 6896 (1998)

    ADS  Google Scholar 

  59. G. Seibold, F. Becca, J. Lorenzana, Phys. Rev. B 67, 085108 (2003)

    ADS  Google Scholar 

  60. C. Attaccalite, M. Fabrizio, Phys. Rev. B 68, 155117 (2003)

    ADS  Google Scholar 

  61. M. Ferrero, F. Becca, M. Fabrizio, M. Capone, Phys. Rev. B 72, 205126 (2005)

    ADS  Google Scholar 

  62. M. Capello, F. Becca, M. Fabrizio, S. Sorella, E. Tosatti, Phys. Rev. Lett. 94, 026406 (2005)

    ADS  Google Scholar 

  63. M. Fabrizio, Phys. Rev. B 76, 165110 (2007)

    ADS  Google Scholar 

  64. N. Lanatà, P. Barone, M. Fabrizio, Phys. Rev. B 78, 155127 (2008)

    ADS  Google Scholar 

  65. K.M. Ho, J. Schmalian, C.Z. Wang, Phys. Rev. B 77, 073101 (2008)

    ADS  Google Scholar 

  66. X. Deng, L. Wang, X. Dai, Z. Fang, Phys. Rev. B 79, 075114 (2009)

    ADS  Google Scholar 

  67. M. Schiró, M. Fabrizio, Phys. Rev. Lett. 105, 076401 (2010)

    ADS  Google Scholar 

  68. L.F. Tocchio, F. Becca, C. Gros, Phys. Rev. B 83, 195138 (2011)

    ADS  Google Scholar 

  69. N. Lanatà, H.U.R. Strand, X. Dai, B. Hellsing, Phys. Rev. B 85, 035133 (2012)

    ADS  Google Scholar 

  70. S.E. Barnes, J. Phys. F 6, 1375 (1976)

    ADS  Google Scholar 

  71. P. Coleman, Phys. Rev. B 29, 3035 (1984)

    ADS  Google Scholar 

  72. G. Kotliar, A.E. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986)

    ADS  MathSciNet  Google Scholar 

  73. O.K. Kalashnikov, E.S. Fradkin, Sov. Phys. J. Exp. Theor. Phys. 28, 317 (1969)

    ADS  Google Scholar 

  74. W. Nolting, Z. Phys. 255, 25 (1972)

    ADS  Google Scholar 

  75. A.V. Chubukov, M.R. Norman, Phys. Rev. B 70, 174505 (2004), and references therein

    ADS  Google Scholar 

  76. P. Prelovšek, A. Ramšak, Phys. Rev. B 72, 012510 (2005)

    ADS  Google Scholar 

  77. N.M. Plakida, V.S. Oudovenko, J. Exp. Theor. Phys. 104, 230 (2007)

    ADS  Google Scholar 

  78. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

    ADS  Google Scholar 

  79. A. Georges, G. Kotliar, Phys. Rev. B 45, 6479 (1992)

    ADS  Google Scholar 

  80. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    ADS  MathSciNet  Google Scholar 

  81. M.V. Sadovskii, I.A. Nekrasov, E.Z. Kuchinskii, T. Pruschke, V.I. Anisimov, Phys. Rev. B 72, 155105 (2005)

    ADS  Google Scholar 

  82. E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii, J. Exp. Theor. Phys. Lett. 82, 198 (2005)

    Google Scholar 

  83. E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii, Fizika Nizkikh Temperatur 32, 528 (2006)

    Google Scholar 

  84. T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

    ADS  Google Scholar 

  85. G. Kotliar, S.Y. Savrasov, G. Palsson, G. Biroli, Phys. Rev. Lett. 87, 186401 (2001)

    ADS  Google Scholar 

  86. M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, H.R. Krishnamurthy, Phys. Rev. B 58, R7475 (1998)

    ADS  Google Scholar 

  87. D. Sénéchal, D. Perez, M. Pioro-Ladriére, Phys. Rev. Lett. 84, 522 (2000)

    ADS  Google Scholar 

  88. F. Mancini, A. Avella, Adv. Phys. 53, 537 (2004)

    ADS  Google Scholar 

  89. F. Mancini, A. Avella, Eur. Phys. J. B 36, 37 (2003)

    ADS  Google Scholar 

  90. A. Avella, F. Mancini, in Strongly Correlated Systems: Theoretical Methods, edited by A. Avella F. Mancini (Springer Berlin Heidelberg, 2012), Vol. 171 of Springer Series in Solid-State Sciences, p. 103, http://dx.doi.org/10.1007/978-3-642-21831-6˙4

  91. A. Avella, F. Mancini, D. Villani, L. Siurakshina, V.Yu. Yushankhai, Int. J. Mod. Phys. B 12, 81 (1998)

    ADS  Google Scholar 

  92. A. Avella, F. Mancini, R. Münzner, Phys. Rev. B 63, 245117 (2001)

    ADS  Google Scholar 

  93. A. Avella, F. Mancini, M.d.M. Sánchez-López, Eur. Phys. J. B 29, 399 (2002)

    ADS  Google Scholar 

  94. A. Avella, F. Mancini, V. Turkowski, Phys. Rev. B 67, 115123 (2003)

    ADS  Google Scholar 

  95. A. Avella, F. Mancini, T. Saikawa, Eur. Phys. J. B 36, 445 (2003)

    ADS  Google Scholar 

  96. A. Avella, F. Mancini, E. Plekhanov, Physica C 470, S930 (2010)

    ADS  Google Scholar 

  97. A. Avella, F. Mancini, F.P. Mancini, E. Plekhanov, J. Phys. Chem. Solids 72, 362 (2011)

    ADS  Google Scholar 

  98. S. Odashima, A. Avella, F. Mancini, Phys. Rev. B 72, 205121 (2005)

    ADS  Google Scholar 

  99. A. Avella, F. Mancini, F.P. Mancini, E. Plekhanov, J. Phys. Chem. Solids 72, 384 (2011)

    ADS  Google Scholar 

  100. A. Avella, F. Mancini, F.P. Mancini, E. Plekhanov, J. Phys.: Conf. Series 273, 012091 (2011)

    ADS  Google Scholar 

  101. A. Avella, F. Mancini, F.P. Mancini, E. Plekhanov, J. Phys.: Conf. Series 391, 012121 (2012)

    ADS  Google Scholar 

  102. A. Avella, F. Mancini, F.P. Mancini, E. Plekhanov, Eur. Phys. J. B 86, 265 (2013)

    ADS  MathSciNet  Google Scholar 

  103. A. Avella, F. Mancini, D. Villani, Phys. Lett. A 240, 235 (1998)

    ADS  Google Scholar 

  104. A. Avella, F. Mancini, D. Villani, H. Matsumoto, Eur. Phys. J. B 20, 303 (2001)

    ADS  Google Scholar 

  105. A. Avella, F. Mancini, Eur. Phys. J. B 41, 149 (2004)

    ADS  Google Scholar 

  106. D. Villani, E. Lange, A. Avella, G. Kotliar, Phys. Rev. Lett. 85, 804 (2000)

    ADS  Google Scholar 

  107. A. Avella, F. Mancini, R. Hayn, Eur. Phys. J. B 37, 465 (2004)

    ADS  Google Scholar 

  108. E. Plekhanov, A. Avella, F. Mancini, F.P. Mancini, J. Phys.: Conf. Ser. 273, 012147 (2011)

    ADS  Google Scholar 

  109. A. Avella, F. Mancini, Eur. Phys. J. B 50, 527 (2006)

    ADS  Google Scholar 

  110. A. Avella, F. Mancini, E. Plekhanov, Eur. Phys. J. B 66, 295 (2008)

    ADS  MATH  MathSciNet  Google Scholar 

  111. E. Plekhanov, A. Avella, F. Mancini, Phys. Rev. B 74, 115120 (2006)

    ADS  Google Scholar 

  112. E. Plekhanov, A. Avella, F. Mancini, Eur. Phys. J. B 77, 381 (2010)

    ADS  Google Scholar 

  113. A. Avella, F. Mancini, D. Villani, Solid State Commun. 108, 723 (1998)

    ADS  Google Scholar 

  114. A. Avella, F. Mancini, Eur. Phys. J. B 32, 27 (2003)

    ADS  Google Scholar 

  115. A. Avella, F. Mancini, Phys. Rev. B 75, 134518 (2007)

    ADS  Google Scholar 

  116. A. Avella, F. Mancini, J. Phys.: Condens. Matter 19, 255209 (2007)

    ADS  Google Scholar 

  117. A. Avella, F. Mancini, Acta Phys. Pol. A 113, 395 (2008)

    Google Scholar 

  118. A. Avella, F. Mancini, J. Phys.: Condens. Matter 21, 254209 (2009)

    ADS  Google Scholar 

  119. A. Moreo, D.J. Scalapino, R.L. Sugar, S.R. White, N.E. Bickers, Phys. Rev. B 41, 2313 (1990)

    ADS  Google Scholar 

  120. G. Sangiovanni, private communication

  121. M. Capone, private communication

  122. P. Prelovšek, private communication

  123. C.N. Varney, C.-R. Lee, Z.J. Bai, S. Chiesa, M. Jarrell, R.T. Scalettar, Phys. Rev. B 80, 075116 (2009)

    ADS  Google Scholar 

  124. S.R. White, D.J. Scalapino, R.L. Sugar, E.Y. Loh, J.E. Gubernatis, R.T. Scalettar, Phys. Rev. B 40, 506 (1989)

    ADS  Google Scholar 

  125. F. Becca, A. Parola, S. Sorella, Phys. Rev. B 61, 16287 (2000)

    ADS  Google Scholar 

  126. N. Bulut, D.J. Scalapino, S.R. White, Phys. Rev. B 50, 7215 (1994)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Avella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avella, A. The Hubbard model beyond the two-pole approximation: a composite operator method study. Eur. Phys. J. B 87, 45 (2014). https://doi.org/10.1140/epjb/e2014-40630-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-40630-7

Keywords

Navigation