Skip to main content
Log in

The probe technique far from equilibrium: Magnetic field symmetries of nonlinear transport

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The probe technique is a simple mean to incorporate elastic and inelastic processes into quantum transport problems. Using numerical simulations, we demonstrate that this tool can be employed beyond the analytically tractable linear response regime, providing a stable solution for the probe parameters: temperature and chemical potential. Adopting four probes: dephasing, voltage, temperature, and voltage-temperature, mimicking different elastic and inelastic effects, we provide a systematic analysis of magnetic field and gate voltage symmetries of charge current and heat current in Aharonov-Bohm interferometers, potentially far from equilibrium. Considering electron current, we prove that in the linear response regime inelastic scattering processes do not break the Onsager symmetry. Beyond linear response, even (odd) conductance terms obey an odd (even) symmetry with the threading magnetic flux, as long as the system acquires a spatial inversion symmetry. When spatial asymmetry is introduced, particle-hole symmetry assures that nonlinear conductance terms maintain certain symmetries with respect to magnetic field and gate voltage. These analytic results are supported by numerical simulations. Analogous results are obtained for the electron heat current. Finally, we demonstrate that a double-dot Aharonov-Bohm interferometer can act as a charge rectifier when two conditions are met simultaneously: (i) many-body effects are included, here in the form of inelastic scattering; and (ii) time reversal symmetry is broken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Andergassen, V. Meden, H. Schoeller, J. Splettstoesser, M.R. Wegewijs, Nanotechnology 21, 272001 (2010), and references therein

    Article  ADS  Google Scholar 

  2. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland Pub., Amsterdam, 1981)

  3. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

  4. M. Büttiker, Phys. Rev. B 32, 1846 (1985)

    Article  ADS  Google Scholar 

  5. M. Büttiker, Phys. Rev. B 33, 3020 (1986)

    Article  ADS  Google Scholar 

  6. M. Büttiker, IBM J. Res. Dev. 32, 63 (1988)

    Article  Google Scholar 

  7. J.L. D’Amato, H.M. Pastawski, Phys. Rev. B 41, 7411 (1990)

    Article  ADS  Google Scholar 

  8. T. Ando, Surf. Sci. 361-362, 270 (1996)

    Article  ADS  Google Scholar 

  9. P.A. Jacquet, J. Stat. Phys. 134, 709 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. K. Saito, G. Benenti, G. Casati, T. Prosen, Phys. Rev. B 84, 201306 (2011)

    Article  ADS  Google Scholar 

  11. V. Balachandran, G. Benenti, G. Casati, Phys. Rev. B 87, 165419 (2013)

    Article  ADS  Google Scholar 

  12. K. Brandner, K. Saito, U. Seifert, Phys. Rev. Lett. 110, 070603 (2013)

    Article  ADS  Google Scholar 

  13. J.P. Bergfield, S.M. Story, R.C. Stafford, C.A. Stafford, ACS Nano 7, 4429 (2013)

    Article  Google Scholar 

  14. Y. Ming, Z. Wang, Z. Ding, H. Li, New J. Phys. 12, 103041 (2010)

    Article  ADS  Google Scholar 

  15. M. Bandyopadhyay, D. Segal, Phys. Rev. E 84, 011151 (2011)

    Article  ADS  Google Scholar 

  16. E. Pereira, H.C.F. Lemos, R.R. Avila, Phys. Rev. E 84, 061135 (2011)

    Article  ADS  Google Scholar 

  17. Ph.A. Jacquet, C.-A. Pillet, Phys. Rev. B 85, 125120 (2012)

    Article  ADS  Google Scholar 

  18. K. Saaskilahti, J. Oksanen, J. Tulkki, Phys. Rev. E 88, 012128 (2013)

    Article  ADS  Google Scholar 

  19. P. Roulleau, F. Portier, P. Roche, A. Cavanna, G. Faini, U. Gennser, D. Mailly, Phys. Rev. Lett. 102, 236802 (2009)

    Article  ADS  Google Scholar 

  20. M.J.M. de Jong, C.W.J. Beenakker, Physica A 230, 219 (1996)

    Article  ADS  Google Scholar 

  21. S.A. van Langen, M. Büttiker, Phys. Rev. B 56, R1680 (1997)

    Article  ADS  Google Scholar 

  22. H.-L. Engquist, P.W. Anderson, Phys. Rev. B 24, 1151 (1981)

    Article  ADS  Google Scholar 

  23. D. Roy, A. Dhar, Phys. Rev. B 75, 195110 (2007)

    Article  ADS  Google Scholar 

  24. F. Bonetto, J. Lebowitz, L. Rey-Bellet, Mathematical Physics 2000 (World Scientific, Singapore, 2000), pp. 128150

  25. F. Bonetto, J.L. Lebowitz, J. Lukkarinen, J. Stat. Phys. 116, 783 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. A. Dhar, D. Roy, J. Stat. Phys. 125, 801 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. D. Roy, Phys. Rev. E 77, 062102 (2008)

    Article  ADS  Google Scholar 

  28. D. Segal, Phys. Rev. E 79, 012103 (2009)

    Article  ADS  Google Scholar 

  29. S. Pilgram, P. Samuelsson, H. Förster, M. Büttiker, Phys. Rev. Lett. 97, 066801 (2006)

    Article  ADS  Google Scholar 

  30. L. Onsager, Phys. Rev. 37, 405 (1931)

    Article  ADS  Google Scholar 

  31. L. Onsager, Phys. Rev. 38, 2265 (1931)

    Article  ADS  MATH  Google Scholar 

  32. H.B.G. Casimir, Rev. Mod. Phys. 17, 343 (1945)

    Article  ADS  Google Scholar 

  33. Y. Imry, Introduction to Mesoscopic Physics, 2nd edn. (Oxford University Press, Oxford, 2002)

  34. A. Yacoby, M. Heiblum, D. Mahalu, H. Shtrikman, Phys. Rev. Lett. 74, 4047 (1995)

    Article  ADS  Google Scholar 

  35. H. Linke, W.D. Sheng, A. Svensson, A. Löfgren, L. Christensson, H.Q. Xu, P. Omling, P.E. Lindelof, Phys. Rev. B. 61, 15914 (2000)

    Article  ADS  Google Scholar 

  36. A. Löfgren, C.A. Marlow, I. Shorubalko, R.P. Taylor, P. Omling, L. Samuelson, H. Linke, Phys. Rev. Lett. 92, 046803 (2004)

    Article  ADS  Google Scholar 

  37. C.A. Marlow, R.P. Taylor, M. Fairbanks, I. Shorubalko, H. Linke, Phys. Rev. Lett. 96, 116801 (2006)

    Article  ADS  Google Scholar 

  38. J. Wei, M. Shimogawa, Z. Wang, I. Radu, R. Dormaier, D.H. Cobden, Phys. Rev. Lett. 95, 256601 (2005)

    Article  ADS  Google Scholar 

  39. R. Leturcq, D. Sanchez, G. Götz, T. Ihn, K. Ensslin, D.C. Driscoll, A.C. Gossard, Phys. Rev. Lett. 96, 126801 (2006)

    Article  ADS  Google Scholar 

  40. R. Leturcq, R. Bianchetti, G. Götz, T. Ihn, K. Ensslin, D.C. Driscoll, A.C. Gossard, Physica E 35, 327 (2006)

    Article  ADS  Google Scholar 

  41. D.M. Zumbhl, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. Lett. 96, 206802 (2006)

    Article  ADS  Google Scholar 

  42. L. Angers, E. Zakka-Bajjani, R. Deblock, S. Gueron, H. Bouchiat, A. Cavanna, U. Gennser, M. Polianski, Phys. Rev. B 75, 115309 (2007)

    Article  ADS  Google Scholar 

  43. M. Sigrist, T. Ihn, K. Ensslin, M. Reinwald, W. Wegscheider, Phys. Rev. Lett. 98, 036805 (2007)

    Article  ADS  Google Scholar 

  44. T. Ihn, M. Sigrist, K. Ensslin, W. Wegscheider, M. Reinwald, New J. Phys. 9, 111 (2007)

    Article  ADS  Google Scholar 

  45. G.M. Gusev, Z.D. Kvon, E.B. Olshanetsky, A.Y. Plotnikov, Europhys. Lett. 88, 47007 (2009)

    Article  ADS  Google Scholar 

  46. F.G.G. Hernandez, G.M. Gusev, Z.D. Kvon, J.C. Portal, Phys. Rev. B 84, 075332 (2011)

    Article  ADS  Google Scholar 

  47. D. Sanchez, M. Büttiker, Phys. Rev. Lett. 93, 106802 (2004)

    Article  ADS  Google Scholar 

  48. M. Büttiker, D. Sanchez, Int. J. Quantum Chem. 105, 906 (2005)

    Article  ADS  Google Scholar 

  49. B. Spivak, A. Zyuzin, Phys. Rev. Lett. 93, 226801 (2004)

    Article  ADS  Google Scholar 

  50. A.R. Hernandez, C.H. Lewenkopf, Phys. Rev. Lett. 103, 166801 (2009)

    Article  ADS  Google Scholar 

  51. J.S. Lim, D. Sanchez, R. Lopez, Phys. Rev. B 81, 155323 (2010). Note that in this work the authors used a different convention for the current expansion with voltage, I = G0Δμ + G1Δ μ2 + ...

    Article  ADS  Google Scholar 

  52. T. Kubo, Y. Ichigo, Y. Tokura, Phys. Rev. B 83, 235310 (2011)

    Article  ADS  Google Scholar 

  53. V. Puller, Y. Meir, M. Sigrist, K. Ensslin, T. Ihn, Phys. Rev. B 80, 035416 (2009)

    Article  ADS  Google Scholar 

  54. M. Terraneo, M. Peyrard, G. Casati, Phys. Rev. Lett. 88, 094302 (2002)

    Article  ADS  Google Scholar 

  55. D. Segal, A. Nitzan, Phys. Rev. Lett. 94, 034301 (2005)

    Article  ADS  Google Scholar 

  56. C.W. Chang et al., Science 314, 1121 (2006)

    Article  ADS  Google Scholar 

  57. X.-F. Li, X. Ni, L. Feng, M.-H. Lu, C. He, Y.-F. Chen, Phys. Rev. Lett. 106, 084301 (2011)

    Article  ADS  Google Scholar 

  58. L. Feng, Y.-L. Xu, W.S. Fegadolli, M.-H. Lu, J.E.B. Oliveira, V.R. Almeida, Y.-F. Chen, A. Scherer, Nat. Mater. 12, 108 (2013)

    Article  ADS  Google Scholar 

  59. S. Bedkihal, M. Bandyopadhyay, D. Segal, Phys. Rev. B 88, 155407 (2013)

    Article  ADS  Google Scholar 

  60. R. Landauer, IBM J. Res. Dev. 1, 223 (1957)

    Article  MathSciNet  Google Scholar 

  61. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  62. S. Datta, Electric transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

  63. W.H. Press, B.P. Flannery, S.A. Teukosky, W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, 1992)

  64. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  65. J. Fransson, Non-equilibrium nano-physics, a many body approach, Lecture Notes in Physics (Springer, 2010), Vol. 809

  66. S. Bedkihal, D. Segal, Phys. Rev. B 85, 155324 (2012)

    Article  ADS  Google Scholar 

  67. M.W.-Y. Tu, W.-M. Zhang, J. Jin, O. Entin-Wohlman, A. Aharony, Phys. Rev. B 86, 115453 (2012)

    Article  ADS  Google Scholar 

  68. S. Bedkihal, M. Bandyopadhyay, D. Segal, Phys. Rev. B 87, 045418 (2013)

    Article  ADS  Google Scholar 

  69. B. Kubala, J. König, Phys. Rev. B 65, 245301 (2002)

    Article  ADS  Google Scholar 

  70. D. Sanchez, R. Lopez, Phys. Rev. Lett. 110, 026804 (2013)

    Article  ADS  Google Scholar 

  71. S.-Y. Hwang, D. Sanchez, M. Lee, R. Lopez, arXiv: 1306.6558v1 (2013)

  72. S. Bedkihal, D. Segal, unpublished

  73. E. Deyo, B. Spivak, A. Zyuzin, Phys. Rev. B 74, 104205 (2006)

    Article  ADS  Google Scholar 

  74. A. Ueda, M. Eto, Phys. Rev. B 73, 235353 (2006)

    Article  ADS  Google Scholar 

  75. A. Ueda, M. Eto, New J. Phys. 9, 119 (2007)

    Article  ADS  Google Scholar 

  76. T. Kubo, Y. Tokura, S. Tarucha, J. Phys. A 43, 354020 (2010)

    Article  Google Scholar 

  77. D. Sanchez, K. Kang, Phys. Rev. Lett. 100, 036806 (2008)

    Article  ADS  Google Scholar 

  78. V.I. Puller, Y. Meir, Phys. Rev. Lett. 104, 256801 (2010)

    Article  ADS  Google Scholar 

  79. O. Hod, R. Baer, E. Rabani, Phys. Rev. Lett. 97, 266803 (2006)

    Article  ADS  Google Scholar 

  80. O. Hod, R. Baer, E. Rabani, J. Phys.: Condens. Matter 20, 383201 (2008)

    ADS  Google Scholar 

  81. O. Entin-Wohlman, A. Aharony, Phys. Rev. B 85, 085401 (2012)

    Article  ADS  Google Scholar 

  82. K. Saito, Y. Utsumi, Phys. Rev. B 78, 115429 (2008)

    Article  ADS  Google Scholar 

  83. D. Sanchez, L. Serra, Phys. Rev. B 84, 201307(R) (2011)

    Article  ADS  Google Scholar 

  84. R.S. Whitney, Phys. Rev. B 87, 115404 (2013)

    Article  ADS  Google Scholar 

  85. Z. Zimboras, M. Faccin, Z. Kadar, J.D. Whitefield, B.P. Lanyon, J. Biamonte, Sci. Rep. 3, 2361 (2013)

    Article  ADS  Google Scholar 

  86. V. Kashcheyevs, A. Aharony, O. Entin-Wohlman, Phys. Rev. B 73, 125338 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dvira Segal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedkihal, S., Bandyopadhyay, M. & Segal, D. The probe technique far from equilibrium: Magnetic field symmetries of nonlinear transport. Eur. Phys. J. B 86, 506 (2013). https://doi.org/10.1140/epjb/e2013-40971-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40971-7

Keywords

Navigation