Skip to main content
Log in

Brownian pump induced by the phase difference between the potential and the entropic barrier

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Transport of Brownian particles in a finite channel is investigated in the presence of a symmetric potential and an unbiased external force. It is found that the phase difference between the potential (energetic barriers) and the entropic barrier can break the symmetry of the system and control the transport of Brownian particles. Especially, the particles can be pumped through the channel from a reservoir at low concentration to one at the same or higher concentration. There exist optimized values of the parameters (the temperature and the amplitude of the external force) at which the pumping capacity takes its maximum value. The pumping capacity decreases with increasing the radius at the bottleneck of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Alberts et al., Molecular Biology of the Cell, 4th edn. (Garland Science, New York, 2002)

  2. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  3. P. Reimann, Phys. Rep. 290, 149 (1997)

    Article  ADS  Google Scholar 

  4. J. Prost, J.F. Chauwin, L. Peliti, A. Ajdari, Phys. Rev. Lett. 72, 2652 (1994)

    Article  ADS  Google Scholar 

  5. R.D. Astumian, I. Derenyi, Phys. Rev. Lett. 86, 3859 (2001)

    Article  ADS  Google Scholar 

  6. R.D. Astumian, Phys. Rev. Lett. 91, 118102 (2003)

    Article  ADS  Google Scholar 

  7. I. Kosztin, K. Schulten, Phys. Rev. Lett. 93, 238102 (2004)

    Article  ADS  Google Scholar 

  8. M. Rey, M. Strass, S. Kohler, P. Hänggi, F. Sols, Phys. Rev. B 76, 085337 (2007)

    Article  ADS  Google Scholar 

  9. J.F. Wambaugh, C. Reichhardt, C.J. Olson, F. Marchesoni, F. Nori, Phys. Rev. Lett. 83, 5106 (1999)

    Article  ADS  Google Scholar 

  10. S. Savelev, V. Misko, F. Marchesoni, F. Nori, Phys. Rev. B 71, 214303 (2005)

    Article  ADS  Google Scholar 

  11. J.M. Sancho, A. Gomez-Marin, Phys. Rev. E 77, 031108 (2008)

    Article  ADS  Google Scholar 

  12. J.M. Sancho, A. Gomez-Marin, Proc. SPIE 6602, 66020B (2007)

    Article  ADS  Google Scholar 

  13. A. Gomez-Marin, J.M. Sancho, Europhys. Lett. 86, 4002 (2009)

    Article  Google Scholar 

  14. P.K. Ghosh, V.R. Misko, F. Marchesoni, F. Nori, Phys. Rev. Lett. 110, 268301 (2013)

    Article  ADS  Google Scholar 

  15. F. Marchesoni, S. Savelev, Phys. Rev. E 80, 011120 (2009)

    Article  ADS  Google Scholar 

  16. B.Q. Ai, L.G. Liu, Phys. Rev. E 74, 051114 (2006)

    Article  ADS  Google Scholar 

  17. B.Q. Ai, Phys. Rev. E 80, 011113 (2009)

    Article  ADS  Google Scholar 

  18. B.Q. Ai, L.G. Liu, J. Phys. Chem. B 112, 9540 (2008)

    Article  Google Scholar 

  19. B.Q. Ai, L.G. Liu, J. Chem. Phys. 128, 024706 (2008)

    Article  ADS  Google Scholar 

  20. A.M. Berezhkovskii, M.A. Pustovoit, S.M. Bezrukov, Phys. Rev. E 80, 020904(R) (2009)

    Article  ADS  Google Scholar 

  21. A.M. Berezhkovskii, S.M. Bezrukov, Biophys. J. 88, L17 (2005)

    Article  Google Scholar 

  22. D. Reguera, A. Luque, P.S. Burada, G. Schmid, J.M. Rubi, P. Hänggi, Phys. Rev. Lett. 108, 020604 (2012)

    Article  ADS  Google Scholar 

  23. B.Q. Ai, J.C. Wu, J. Chem. Phys. 139, 034114 (2013)

    Article  ADS  Google Scholar 

  24. M. Borromeo, F. Marchesoni, P.K. Ghosh, J. Chem. Phys. 134, 051101 (2011)

    Article  ADS  Google Scholar 

  25. F. Marchesoni, J. Chem. Phys. 132, 166101 (2010)

    Article  ADS  Google Scholar 

  26. M. Borromeo, F. Marchesoni, Chem. Phys. 375, 536 (2010)

    Article  ADS  Google Scholar 

  27. P.K. Ghosh, F. Marchesoni, J. Chem. Phys. 136, 116101 (2012)

    Article  ADS  Google Scholar 

  28. Yu.A. Makhnovskii, A.M. Berezhkovskii, V.Yu. Zitserman, J. Chem. Phys. 131, 104705 (2009)

    Article  ADS  Google Scholar 

  29. A.M. Berezhkovskii, L. Dagdug, Yu.A. Makhnovskii, V.Yu. Zitserman, J. Chem. Phys. 132, 221104 (2010)

    Article  ADS  Google Scholar 

  30. P. Hänggi, F. Marchesoni, S. Savelev, G. Schmid, Phys. Rev. E 82, 041121 (2010)

    Article  ADS  Google Scholar 

  31. P.K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, G. Schmid, Phys. Rev. E 86, 021112 (2012)

    Article  ADS  Google Scholar 

  32. M.H. Jacobs, Diffusion Processes (Springer, New York, 1967)

  33. R. Zwanzig, J. Phys. Chem. 96, 3926 (1992)

    Article  Google Scholar 

  34. D. Reguera, G. Schmid, P.S. Burada, J.M. Rubi, P. Reimann, P. Hänggi, Phys. Rev. Lett. 96, 130603 (2006)

    Article  ADS  Google Scholar 

  35. D. Reguera, J.M. Rubi, Phys. Rev. E 64, 061106 (2001)

    Article  ADS  Google Scholar 

  36. P. Kalinay, J.K. Percus, Phys. Rev. E 82, 031143 (2010)

    Article  ADS  Google Scholar 

  37. P. Kalinay, J.K. Percus, Phys. Rev. E 74, 041203 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  38. P. Kalinay, J.K. Percus, Phys. Rev. E 72, 061203 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  39. P. Kalinay, Phys. Rev. E 84, 011118 (2011)

    Article  ADS  Google Scholar 

  40. N. Laachi, M. Kenward, E. Yariv, K.D. Dorfman, Europhys. Lett. 80, 50009 (2007)

    Article  ADS  Google Scholar 

  41. P. Kalinay, J.K. Percus, Phys. Rev. E 83, 031109 (2011)

    Article  ADS  Google Scholar 

  42. S. Martens, G. Schmid, L. Schimansky-Geier, P. Hänggi, Phys. Rev. E 83, 051135 (2011)

    Article  ADS  Google Scholar 

  43. R. Reichelt, S. Gunther, J. Wintterlin, W. Moritz, L. Aballe, T.O. Mentes, J. Phys. Chem. 127, 134706 (2007)

    Article  Google Scholar 

  44. P.S. Burada, G. Schmid, D. Reguera, M.H. Vainstein, J.M. Rubi, P. Hänggi, Phys. Rev. Lett. 101, 130602 (2008)

    Article  ADS  Google Scholar 

  45. P.K. Ghosh, F. Marchesoni, S.E. Savelev, F. Nori, Phys. Rev. Lett. 104, 020601 (2010)

    Article  ADS  Google Scholar 

  46. D. Mondal, M. Das, D.S. Ray, J. Chem. Phys. 133, 204102 (2010)

    Article  ADS  Google Scholar 

  47. M. Das, D. Mondal, D.S. Ray, J. Chem. Phys. 136, 114104 (2012)

    Article  ADS  Google Scholar 

  48. D. Mondal, M. Das, D.S. Ray, J. Chem. Phys. 132, 224102 (2010)

    Article  ADS  Google Scholar 

  49. S. Martens, A.V. Straube, G. Schmid, L. Schimansky-Geier, P. Hänggi, Phys. Rev. Lett. 110, 010601 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-quan Ai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Xt., Wu, Jc., Ai, Bq. et al. Brownian pump induced by the phase difference between the potential and the entropic barrier. Eur. Phys. J. B 86, 479 (2013). https://doi.org/10.1140/epjb/e2013-40862-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40862-y

Keywords

Navigation