Skip to main content
Log in

Size dependence of efficiency at maximum power of heat engine

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)

    Article  ADS  Google Scholar 

  2. I.I. Novikov, J. Nucl. Energy II 7, 125 (1958)

    Google Scholar 

  3. P.T. Landsberg, H.S. Leff, J. Phys. A 22, 4019 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  4. J.M. Gordon, Am. J. Phys. 57, 1136 (1989)

    Article  ADS  Google Scholar 

  5. A. Benjamin, J. Appl. Phys. 79, 1191 (1996)

    Article  ADS  Google Scholar 

  6. P. Salamon, J.D. Nulton, G. Siragusa, T.R. Andersen, A. Limon, Energy 26, 307 (2001)

    Article  Google Scholar 

  7. L. Chen, Z. Yan, J. Chem. Phys. 90, 3740 (1989)

    Article  ADS  Google Scholar 

  8. S. Velasco, J.M.M. Roco, A. Medina, A. Calvo Hernández, J. Phys. D 34, 1000 (2001)

    Article  ADS  Google Scholar 

  9. H. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (Wiley, New York, 1985), Chap. 4

  10. C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005)

    Article  Google Scholar 

  11. A. Gomez-Marin, J.M. Sancho, Phys. Rev. E 74, 062102 (2006)

    Article  ADS  Google Scholar 

  12. T. Schmiedl, U. Seifert, Europhys. Lett. 81, 20003 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Esposito, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 102, 130602 (2009)

    Article  ADS  Google Scholar 

  14. Y. Izumida, K. Okuda, Europhys. Lett. 83, 60003 (2008)

    Article  ADS  Google Scholar 

  15. Y. Izumida, K. Okuda, Phys. Rev. E 80, 021121 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  16. Y. Izumida, K. Okuda, Europhys. Lett. 97, 10004 (2012)

    Article  ADS  Google Scholar 

  17. B. Gaveau, M. Moreau, L.S. Schulman, Phys. Rev. Lett. 105, 060601 (2010)

    Article  ADS  Google Scholar 

  18. M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)

    Article  ADS  Google Scholar 

  19. U. Seifert, Phys. Rev. Lett. 106, 020601 (2011)

    Article  ADS  Google Scholar 

  20. Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, Ph. Lecoeur, Europhys. Lett. 97, 28001 (2012)

    Article  ADS  Google Scholar 

  21. J. Hoppenau, M. Niemann, A. Engel, Phys. Rev. E 87, 062127 (2013)

    Article  ADS  Google Scholar 

  22. V. Blickle, C. Bechinger, Nat. Phys. 8, 143 (2012)

    Article  Google Scholar 

  23. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  24. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 31, 459 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  25. R. Tehver, F. Toigo, J. Koplik, J.R. Banavar, Phys. Rev. E 57, R17 (1998)

    Article  ADS  Google Scholar 

  26. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 27, 1208 (1958)

    Article  ADS  Google Scholar 

  27. T. Shimada, T. Murakami, S. Yukawa, K. Saito, N. Ito, J. Phys. Soc. Jpn 69, 3150 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Izumida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izumida, Y., Ito, N. Size dependence of efficiency at maximum power of heat engine. Eur. Phys. J. B 86, 431 (2013). https://doi.org/10.1140/epjb/e2013-40569-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40569-1

Keywords

Navigation