Skip to main content
Log in

Nucleation kinetics of vapor bubbles in a liquid with arbitrary viscosity

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The multivariable theory of nucleation in Langevin’s approach [N.V. Alekseechkin, J. Chem. Phys. 124, 124512 (2006); N.V. Alekseechkin, J. Chem. Phys. 129, 024512 (2008)] is applied to the problem of vapor bubbles formation in a liquid with arbitrary viscosity. The obtained expression for the nucleation rate of bubbles is valid for arbitrary relations between the kinetic parameters controlling the nucleation process: viscosity, inertia of a liquid, the rate of evaporation into a bubble and the rate of heat exchange between the bubble and ambient liquid. So, the presented theory yields a complete description of the vapor-bubbles nucleation kinetics in single-component liquids. Limiting cases with respect to the mentioned parameters are considered, in particular, the low-viscosity limit. It is shown that the low- and high-viscosity nucleation rates differ from each other qualitatively and quantitatively. The possibility of application of the theory to cavitation in superfluid helium-4 is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Volmer, Kinetik der Phasenbildung (Th. Steinkopff, Dresden, Leipzig, 1939)

  2. Ya.B. Zeldovich, J. Exp. Theor. Phys. 12, 525 (1942)

    Google Scholar 

  3. D.H. Trevena, Cavitation and Tension in Liquids (Hilger, Bristol, England, Philadelphia, 1987)

  4. Yu. Kagan, Rus. J. Phys. Chem. 34, 92 (1960)

    Google Scholar 

  5. B.V. Derjagin, A.V. Prokhorov, N.N. Tunitsky, J. Exp. Theor. Phys. 73, 1831 (1977)

    Google Scholar 

  6. C.E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1996)

  7. A.V. Prokhorov, Bull. Acad. Sci. USSR, Phys. Ser. 239, 1323 (1978)

    Google Scholar 

  8. Z.-J. Wang, C. Valeriani, D. Frenkel, J. Phys. Chem. B 113, 3776 (2009)

    Article  Google Scholar 

  9. I. Kusaka, D.W. Oxtoby, J. Chem. Phys. 111, 1104 (1999)

    Article  ADS  Google Scholar 

  10. S. Balibar, F. Caupin, J. Phys.: Condens. Matter 15, S75 (2003)

    Article  ADS  Google Scholar 

  11. S. Balibar, J. Low Temp. Phys. 129, 363 (2002)

    Article  ADS  Google Scholar 

  12. D. Geraghty, D.H. Trevena, J. Phys. C 2, 1877 (1969)

    Article  ADS  Google Scholar 

  13. P.D. Jarman, K.J. Taylor, J. Low Temp. Phys. 2, 389 (1970)

    Article  ADS  Google Scholar 

  14. H.J. Maris, Q. Xiong, Phys. Rev. Lett. 63, 1078 (1989)

    Article  ADS  Google Scholar 

  15. M. Guilleumas, M. Pi, M. Barranco, J. Navarro, M.A. Solis, Phys. Rev. B 47, 9116 (1993)

    Article  ADS  Google Scholar 

  16. H.J. Maris, S. Balibar, M.S. Pettersen, J. Low Temp. Phys. 93, 1069 (1993)

    Article  ADS  Google Scholar 

  17. F. Caupin, S. Balibar, Phys. Rev. B 64, 064507 (2001)

    Article  ADS  Google Scholar 

  18. R. Becker, W. Döring, Ann. Phys. 24, 719 (1935)

    Article  MATH  Google Scholar 

  19. H.A. Kramers, Physica 7, 284 (1940)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. J. Frenkel, Kinetic Theory of Liquids (Oxford University Press, New York, 1946)

  21. H. Reiss, J. Chem. Phys. 18, 840 (1950)

    Article  ADS  Google Scholar 

  22. J.S. Langer, Ann. Phys. 54, 258 (1969)

    Article  ADS  Google Scholar 

  23. H. Trinkaus, Phys. Rev. B 27, 7372 (1983)

    Article  ADS  Google Scholar 

  24. N.V. Alekseechkin, J. Chem. Phys. 124, 124512 (2006)

    Article  ADS  Google Scholar 

  25. N.V. Alekseechkin, J. Chem. Phys. 129, 024512 (2008)

    Article  ADS  Google Scholar 

  26. H.M. Ellerby, C.L. Weakliem, H. Reiss, J. Chem. Phys. 95, 9209 (1991)

    Article  ADS  Google Scholar 

  27. H. Reiss, W.K. Kegel, J. Phys. Chem. 100, 10428 (1996)

    Article  Google Scholar 

  28. H. Reiss, W.K. Kegel, J.L. Katz, Phys. Rev. Lett. 78, 4506 (1997)

    Article  ADS  Google Scholar 

  29. H. Reiss, W.K. Kegel, J.L. Katz, J. Phys. Chem. A 102, 8548 (1998)

    Article  Google Scholar 

  30. H. Reiss, R.K. Bowles, J. Chem. Phys. 112, 1390 (2000)

    Article  ADS  Google Scholar 

  31. D.W. Oxtoby, J. Phys.: Condens. Matter 4, 7627 (1992)

    Article  ADS  Google Scholar 

  32. D.W. Oxtoby, Acc. Chem. Res. 31, 91 (1998)

    Article  Google Scholar 

  33. D.W. Oxtoby, R. Evans, J. Chem. Phys. 89, 7521 (1988)

    Article  ADS  Google Scholar 

  34. X.C. Zeng, D.W. Oxtoby, J. Chem. Phys. 94, 4472 (1991)

    Article  ADS  Google Scholar 

  35. N.V. Alekseechkin, J. Phys. Chem. B 116, 9445 (2012)

    Article  Google Scholar 

  36. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. A.I. Akhiezer, S.V. Peletminsky, Methods of Statistical Physics (Nauka, Moscow, 1977)

  38. J. Feder, K.C. Russell, J. Lothe, G.M. Pound, Adv. Phys. 15, 111 (1966)

    Article  ADS  Google Scholar 

  39. K.C. Russell, Acta Metall. 16, 761 (1968)

    Article  Google Scholar 

  40. N.V. Alekseechkin, arXiv:1211.1085v3 [physics.chem- ph] (2012)

  41. A.I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967)

  42. G.A. Korn, T.M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw- Hill, 1968)

  43. H. Eyring, J. Chem. Phys. 3, 107 (1935)

    Article  ADS  Google Scholar 

  44. L.D. Landau, The Collected Works (Nauka, Moscow, 1969), Vol. 1, pp. 352 − 385

  45. L.D. Landau, The Collected Works (Nauka, Moscow, 1969), Vol. 1, pp. 453 − 457

  46. D.F. Brewer, D.O. Edwards, Proc. R. Soc. Lond. A 251, 247 (1959)

    Article  ADS  Google Scholar 

  47. G.H. Hunter, D.V. Osborne, J. Phys. C 2, 2414 (1969)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay V. Alekseechkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseechkin, N. Nucleation kinetics of vapor bubbles in a liquid with arbitrary viscosity. Eur. Phys. J. B 86, 401 (2013). https://doi.org/10.1140/epjb/e2013-40547-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40547-7

Keywords

Navigation