Skip to main content

Advertisement

Log in

Energy dissipation in the Nagel-Schreckenberg model with open boundary condition

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we numerically investigate energy dissipation caused by traffic in the Nagel-Schreckenberg (NaSch) model with open boundary conditions (OBC). Boundary results in excess energy dissipation. The effects of the stochastic boundary conditions on energy dissipation are discussed. The behaviors of energy dissipation in different traffic phase are distinct. As an order parameter, energy dissipation rate E d characterizes the phase transition behaviors well. It is shown that there is no true free-flow state in nondeterministic NaSch model with OBC. We refer to this non-true free-flow state as quasi-free-flow (QFF) phase in which there are interactions between vehicles caused by stochastic braking but no backward moving jam exists. In the maximum current phase, E d is minimal thus the social payoff is maximal. Energy dissipation profiles in QFF, jammed and maximum current phase are presented. Theoretical analyses are in good agreement with numerical results for the case v max = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Nakayama, Y. Sugiyama, K. Hasebe, Phys. Rev. E 65, 016112 (2001)

    Article  ADS  Google Scholar 

  2. T. Wang, Z.-Y. Gao, X.-M. Zhao, Acta Physica Sinica 55, 634 (2006)

    Google Scholar 

  3. W. Shi, Y. Xue, Physica A 381, 399 (2007)

    Article  ADS  Google Scholar 

  4. B.A. Toledo, E. Cerda, J. Rogan, V. Munoz, C. Tenreiro, R. Zarama, J.A. Valdivia, Phys. Rev. E 75, 026108 (2007)

    Article  ADS  Google Scholar 

  5. W. Zhang, W. Zhang, X.Q. Yang, Physica A 387, 4657 (2008)

    Article  ADS  Google Scholar 

  6. H.H. Tian, Y. Xue, S.J. Kang, Y.J. Liang, Acta Physica Sinica 58, 4506 (2009)

    MATH  Google Scholar 

  7. J.Y. Liang, W.Z. Ten, Y. Xue, Acta Physica Sinica 62, 024706 (2013)

    Google Scholar 

  8. T. Nagatani, Physica A 390, 4494 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. H.X. Ning, Y. Xue, Chin. Phys. B 21, 040506 (2012)

    Article  ADS  Google Scholar 

  10. W. Zhang, W. Zhang, W. Chen, Eur. Phys. J. B 85, 78 (2012)

    Article  ADS  Google Scholar 

  11. W.X. Zhu, Int. J. Mod. Phys. C 24, 1350046 (2013)

    Article  ADS  Google Scholar 

  12. W.X. Zhu, C.H. Zhang, Physica A 392, 3301 (2013)

    Article  ADS  Google Scholar 

  13. D. Helbing, Phys. Rev. E 55, 3735 (1997)

    Article  ADS  Google Scholar 

  14. D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 329, 199 (2000), and references therein

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)

    Article  ADS  Google Scholar 

  16. T. Nagatani, Rep. Prog. Phys. 65, 1331 (2002)

    Article  ADS  Google Scholar 

  17. S. Maerivoet, B. De Moor, Phys. Rep. 419, 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. K. Nagel, M. Schreckenberg, J. Phys. I 2, 2221 (1992)

    Google Scholar 

  19. S. Cheybani, J. Kertesz, M. Schreckenberg, Phys. Rev. E 63, 016107 (2000)

    Article  ADS  Google Scholar 

  20. S. Cheybani, J. Kertesz, M. Schreckenberg, Phys. Rev. E 63, 016108 (2000)

    Article  ADS  Google Scholar 

  21. R. Barlovic, T. Huisinga, A. Schadschneider, M. Schreckenberg, Phys. Rev. E 66, 046113 (2002)

    Article  ADS  Google Scholar 

  22. R. Jiang, Q.S. Wu, Phys. Rev. E 68, 026135 (2003)

    Article  ADS  Google Scholar 

  23. D.W. Huang, Physica A 387, 587 (2008)

    Article  ADS  Google Scholar 

  24. N. Jia, S.F. Ma, Phys. Rev. E 79, 031115 (2009)

    Article  ADS  Google Scholar 

  25. N. Jia, S.F. Ma, Phys. Rev. E 83, 061150 (2011)

    Article  ADS  Google Scholar 

  26. L.C.Q. Vilar, A.M.C. de Souza, Physica A 211, 84 (1994)

    Article  ADS  Google Scholar 

  27. G. Csanyi, J. Kertesz, J. Phys. A 28, L427 (1995)

    Article  ADS  MATH  Google Scholar 

  28. M. Sasvari, J. Kertesz, Phys. Rev. E 56, 4104 (1997)

    Article  ADS  Google Scholar 

  29. B. Eisenblatter, L. Santen, A. Schadschneider, M. Schreckenberg, Phys. Rev. E 57, 1309 (1998)

    Article  ADS  Google Scholar 

  30. L. Neubert, H.Y. Lee, M. Schreckenberg, J. Phys. A 32, 6517 (1999)

    Article  ADS  MATH  Google Scholar 

  31. L. Roters, S. Lubeck, K.D. Usadel, Phys. Rev. E 59, 2672 (1999)

    Article  ADS  Google Scholar 

  32. D. Chowdhury, J. Kertesz, K. Nagel, L. Santen, A. Schadschneider, Phys. Rev. E 61, 3270 (2000)

    Article  ADS  Google Scholar 

  33. N. Boccara, H. Fuks, J. Phys. A 33, 3407 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. A.M.C. Souza, L.C.Q. Vilar, Phys. Rev. E 80, 021105 (2009)

    Article  ADS  Google Scholar 

  35. M.R. Evans, N. Rajewsky, E.R. Speer, J. Stat. Phys. 95, 45 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. J. de Gier, B. Nienhuis, Phys. Rev. E 59, 4899 (1999)

    Article  ADS  Google Scholar 

  37. N. Rajewsky, L. Santen, A. Schadschneider, M. Schreckenberg, J. Stat. Phys. 92, 151 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Zhang, W. Energy dissipation in the Nagel-Schreckenberg model with open boundary condition. Eur. Phys. J. B 87, 4 (2014). https://doi.org/10.1140/epjb/e2013-40506-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40506-4

Keywords

Navigation