Skip to main content
Log in

Current-driven domain wall dynamics in spin-valve nanostrips with parallel, perpendicular, and tilted polarizers

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Current-driven domain wall dynamics is studied theoretically in the spin-valve nanostrips with parallel, perpendicular and tilted polarizers by Lagrangian formalism. In this description, the Slonczewski and field-like spin-transfer torques act as a Coulomb-type dissipation and an effective magnetic field, respectively. Considering a Walker profile, the wall behavior is governed by the dynamic equations about the center position, the out-of-plane angle, and the width of walls. It is found that the wall precesses after the steady motion breaks down for the parallel polarizer. The field-like spin-transfer torque favors a rapid increase of the steady velocity. The average velocity in the precession is nearly proportional to the current density. On the other hand, there is no precession for the perpendicular and tilted polarizers. Under the perpendicular polarizer, the wall stops when increasing current density. Moreover, there exist hysteresis and tri-stability for a large spin polarization. Under the tilted polarizer, it can be observed hysteretic, linear and nonlinear dependence of the wall velocity on the increasing current density. In the hysteresis, the wall experiences a switching of polarity or a reversal of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008)

    Article  ADS  Google Scholar 

  2. D. Allwood, G. Xiong, C. Faulkner, D. Atkinson, D. Petit, R. Cowburn, Science 309, 1688 (2005)

    Article  ADS  Google Scholar 

  3. L. Berger, Phys. Rev. B 54, 9353 (1996)

    Article  ADS  Google Scholar 

  4. J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)

    Article  ADS  Google Scholar 

  5. J. Grollier, P. Boulenc, V. Cros, A. Hamzic, A. Vaurès, A. Fert, G. Faini, Appl. Phys. Lett. 83, 509 (2003)

    Article  ADS  Google Scholar 

  6. A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004)

    Article  ADS  Google Scholar 

  7. N. Vernier, D.A. Allwood, D. Atkinson, M.D. Cooke, R.P. Cowburn, Europhys. Lett. 65, 526 (2004)

    Article  ADS  Google Scholar 

  8. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, S.S.P. Parkin, Nat. Phys. 3, 21 (2006)

    Article  Google Scholar 

  9. S. Pizzini, V. Uhlíř, J. Vogel, N. Rougemaille, S. Laribi, V. Cros, E. Jiménez, C. Tieg, E. Bonet, M. Bonfim, R. Mattana, C. Deranlot, F. Petroff, C. Ulysse, A. Fert, Appl. Phys. Express 2, 023003 (2009)

    Article  ADS  Google Scholar 

  10. Ya.B. Bazaliy, B.A. Jones, S.C. Zhang, Phys. Rev. B 57, R3213 (1998)

    Article  ADS  Google Scholar 

  11. Z. Li, S. Zhang, Phys. Rev. Lett. 92, 207203 (2004)

    Article  ADS  Google Scholar 

  12. Z. Li, S. Zhang, Phys. Rev. B 70, 024417 (2004)

    Article  ADS  Google Scholar 

  13. S. Zhang, Z. Li, Phys. Rev. Lett. 93, 127204 (2004)

    Article  ADS  Google Scholar 

  14. G. Tatara, H. Kohno, Phys. Rev. Lett. 92, 086601 (2004)

    Article  ADS  Google Scholar 

  15. X. Waintal, M. Viret, Europhys. Lett. 65, 427 (2004)

    Article  ADS  Google Scholar 

  16. A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzuki, Europhys. Lett. 69, 990 (2005)

    Article  ADS  Google Scholar 

  17. P.B. He, X.C. Xie, W.M. Liu, Phys. Rev. B 72, 172411 (2005)

    Article  ADS  Google Scholar 

  18. A. Mougin, M. Cormier, J.P. Adam, P.J. Metaxas, J. Ferre, Europhys. Lett. 78, 57007 (2007)

    Article  ADS  Google Scholar 

  19. Z.Z. Sun, J. Schliemann, P. Yan, X.R. Wang, Eur. Phys. J. B 79, 449 (2011)

    Article  ADS  Google Scholar 

  20. J. Grollier, A. Chanthbouala, R. Matsumoto, A. Anane, V. Cros, F. Nguyen van Dau, A. Fert, C.R. Physique 12, 309 (2011)

    Article  ADS  Google Scholar 

  21. D. Claudio-Gonzalez, A. Thiaville, J. Miltat, Phys. Rev. Lett. 108, 227208 (2012)

    Article  ADS  Google Scholar 

  22. S. Zhang, P.M. Levy, A. Fert, Phys. Rev. Lett. 88, 236601 (2002)

    Article  ADS  Google Scholar 

  23. M.A. Zimmler, B. Özyilmaz, W. Chen, A.D. Kent, J.Z. Sun, M.J. Rooks, R.H. Koch, Phys. Rev. B 70, 184438 (2004)

    Article  ADS  Google Scholar 

  24. J. Xiao, A. Zangwill, M.D. Stiles, Phys. Rev. B 72, 014446 (2005)

    Article  ADS  Google Scholar 

  25. Z. Li, S. Zhang, Z. Diao, Y. Ding, X. Tang, D.M. Apalkov, Z. Yang, K. Kawabata, Y. Huai, Phys. Rev. Lett. 100, 246602 (2008)

    Article  ADS  Google Scholar 

  26. Y. Zhou, J. Appl. Phys. 109, 023916 (2011)

    Article  ADS  Google Scholar 

  27. X.J. Xing, Y.P. Yu, S.W. Li, Appl. Phys. Lett. 95, 142508 (2009)

    Article  ADS  Google Scholar 

  28. A.V. Khvalkovskiy, K.A. Zvezdin, Y.V. Gorbunov, V. Cros, J. Grollier, A. Fert, A.K. Zvezdin, Phys. Rev. Lett. 102, 067206 (2009)

    Article  ADS  Google Scholar 

  29. C.T. Boone, J.A. Katine, M. Carey, J.R. Childress, X. Cheng, I.N. Krivorotov, Phys. Rev. Lett. 104, 097203 (2010)

    Article  ADS  Google Scholar 

  30. C.T. Boone, I.N. Krivorotov, Phys. Rev. Lett. 104, 167205 (2010)

    Article  ADS  Google Scholar 

  31. P. Yan, X.R. Wang, Appl. Phys. Lett. 96, 162506 (2011)

    Article  ADS  Google Scholar 

  32. R. McMichael, M. Donahue, IEEE Trans. Magn. 33, 4167 (1997)

    Article  ADS  Google Scholar 

  33. N. Rougemaille, V. Uhlíř, O. Fruchart, S. Pizzini, J. Vogel, J.C. Toussaint, Appl. Phys. Lett. 100, 172404 (2012)

    Article  ADS  Google Scholar 

  34. X.C. Zhu, J.G. Zhu, IEEE Trans. Magn. 42, 2739 (2006)

    Article  ADS  Google Scholar 

  35. C.L. Zha, J. Akerman, IEEE Trans. Magn. 45, 3491 (2009)

    Article  ADS  Google Scholar 

  36. C.L. Zha, J. Persson, S. Bonetti, Y.Y. Fang, J. Akerman, Appl. Phys. Lett. 94, 163108 (2009)

    Article  ADS  Google Scholar 

  37. U. Roy, H. Seinige, F. Ferdousi, J. Mantey, M. Tsoi, S.K. Banerjee, J. Appl. Phys. 111, 07C913 (2011)

    Article  Google Scholar 

  38. R. Sbiaa, R. Law, E.-L. Tan, T. Liew, J. Appl. Phys. 105, 013910 (2009)

    Article  ADS  Google Scholar 

  39. C.-M. Lee, J.-S. Yang, T.-H. Wu, IEEE Trans. Magn. 47, 649 (2011)

    Article  ADS  Google Scholar 

  40. Y. Zhou, C.L. Zha, S. Bonetti, J. Persson, J. Akerman, Appl. Phys. Lett. 92, 262508 (2008)

    Article  ADS  Google Scholar 

  41. Y. Zhou, C.L. Zha, S. Bonetti, J. Pearson, J. Akerman, J. Appl. Phys. 105, 07D116 (2009)

    Article  Google Scholar 

  42. P.B. He, Z.D. Li, A.L. Pan, Q. Wan, Q.L. Zhang, R.X. Wang, Y.G. Wang, W.M. Liu, B.S. Zou, Phys. Rev. B 78, 054420 (2008)

    Article  ADS  Google Scholar 

  43. P.B. He, Z.D. Li, A.L. Pan, Q.L. Zhang, Q. Wan, R.X. Wang, Y.G. Wang, W.M. Liu, B.S. Zou, J. Appl. Phys. 105, 043908 (2009)

    Article  ADS  Google Scholar 

  44. R.X. Wang, P.B. He, Q.H. Liu, Z.D. Li, A.L. Pan, B.S. Zou, Y.G. Wang, J. Magn. Magn. Mater. 322, 2264 (2010)

    Article  ADS  Google Scholar 

  45. Y. Zhou, S. Bonetti, C.L. Zha, J. Akerman, New J. Phys. 11, 103028 (2009)

    Article  ADS  Google Scholar 

  46. P.B. He, R.X. Wang, Z.D. Li, Q.H. Liu, A.L. Pan, Y.G. Wang, B.S. Zou, Eur. Phys. J. B 73, 417 (2010)

    Article  ADS  Google Scholar 

  47. R.X. Wang, P.B. He, Z.D. Li, A.L. Pan, Q.H. Liu, J. Appl. Phys. 109, 033905 (2011)

    Article  ADS  Google Scholar 

  48. Ya.B. Bazaliy, Phys. Rev. B 85, 014431 (2012)

    Article  ADS  Google Scholar 

  49. Y. Zhou, H. Zhang, Y.W. Liu, J. Åkerman, J. Appl. Phys. 112, 063903 (2012)

    Article  ADS  Google Scholar 

  50. A. Thiaville, J.M. Garcia, J. Miltat, J. Magn. Magn. Mater. 242-245, 1061 (2002)

    Article  ADS  Google Scholar 

  51. J. Miltat, G. Albuquerque, A. Thiaville, in Spin Dynamics in Confined Magnetic Structures I, edited by B. Hillebrands, K. Ounadjela (Springer, New York, 2002), p. 12

  52. A. Thiaville, Y. Nakatani, in Spin Dynamics in Confined Magnetic Structures III, edited by B. Hillebrands, A. Thiaville (Springer, New York, 2002), p. 180

  53. A. Thiaville, Y. Nakatani, J. Miltat, N. Vernier, J. Appl. Phys. 95, 7049 (2004)

    Article  ADS  Google Scholar 

  54. N.L. Schryer, L.R. Walker, J. Appl. Phys. 45, 5406 (1974)

    Article  ADS  Google Scholar 

  55. J. Angeles, Dynamic Response of Linear Mechanical Systems (Springer, New York, 2011), p. 26

  56. G. Bertotti, I. Mayergoyz, C. Serpico, Nonlinear magnetization Dynamics in Nanosystems (Elsevier, Oxford, 2009), p. 237

  57. A. Vanhaverbeke, A. Bischof, R. Allenspach, Phys. Rev. Lett. 101, 107202 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Bin He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, PB. Current-driven domain wall dynamics in spin-valve nanostrips with parallel, perpendicular, and tilted polarizers. Eur. Phys. J. B 86, 412 (2013). https://doi.org/10.1140/epjb/e2013-40472-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40472-9

Keywords

Navigation