Skip to main content
Log in

Saddle-point equilibrium lines between fcc and bcc phases in Al and Ca from first principles

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Phase equilibrium lines (denoted ph-eq lines) of face-centered-cubic (fcc) and body-centered-cubic (bcc) phases, as well as saddle-point equilibrium lines (denoted sp-eq lines) in Al and Ca are studied by first-principles total-energy calculations. For a non-vibrating crystal of Al we determine the transition pressure p t = 2.62 Mbar from fcc to bcc phase. The sp-eq line lies between the two ph-eq lines, merges with the bcc-eq line at V = 61 au3/atom (p = 1.64 Mbar) and with the fcc-eq line at V = 42.4 au3/atom (p = 5.50 Mbar), gives the Gibbs free energy barrier ΔG = 0.64 mRy/atom at p t . The bcc phase is unstable below 1.64 Mbar, while the fcc phase is unstable above 5.50 Mbar. In a non-vibrating crystal of Ca two sp-eq lines (denoted sp1-eq line and sp2-eq line, respectively) are found corresponding to two phase transitions: one is from fcc to bcc at p t1 = 89.6 kbar, the other is from bcc to fcc at p t2 = 787 kbar. The sp1-eq line merges with the bcc-eq line at V = 231 au3/atom (p = 50 kbar) and with the fcc-eq line at V = 183 au3/atom (p = 174 kbar), gives a barrier of Δ G 1 = 0.62 mRy/atom at p t1. The sp2-eq line merges with the bcc-eq line at V = 90 au3/atom (p = 981 kbar) and with the fcc-eq line at V = 110 au3/atom (p = 624 kbar), gives a barrier of Δ G 2 = 1.1 mRy/atom at p t2. The bcc phase is stable in the range from 50 kbar to 981 kbar but unstable outside this range, while the fcc phase is unstable in the range from 174 to 624 kbar but stable outside this range. This work confirms all the features of the sp-eq line described in our recent work [S.L. Qiu, P.M. Marcus, J. Phys.: Condens. Matter 24, 225501 (2012)] and finds two additional features: (1) there are two sp-eq lines corresponding to the two phase transitions between fcc and bcc phases in Ca; (2) fcc phase of Ca is unstable between the two merge points on the fcc-eq line but stable beyond them, while bcc phase of Ca is stable between the two merge points on the bcc-eq line but unstable beyond them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Qiu, P.M. Marcus, J. Phys.: Condens. Matter 24, 225501 (2012)

    Article  ADS  Google Scholar 

  2. P.M. Marcus, H. Ma, S.L. Qiu, J. Phys.: Condensed Matter 14, L525 (2002)

    Article  ADS  Google Scholar 

  3. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Statistical Physics, 3rd edn. (Pergamon, 1980), Vol. 5, Part 1

  4. P.M. Marcus, S.L. Qiu, J. Phys.: Condens. Matter 16, 8787 (2004)

    Article  ADS  Google Scholar 

  5. J.A. Moriarty, A.K. McMahan, Phys. Rev. Lett. 48, 809 (1982)

    Article  ADS  Google Scholar 

  6. P.K. Lam, M.L. Cohen, Phys. Rev. B 27, 5986 (1983)

    Article  ADS  Google Scholar 

  7. J.C. Boettger, S.B. Trickey, Phys. Rev. B 29, 6434 (1984)

    Article  ADS  Google Scholar 

  8. G.V. Sin’ko, N.A. Smirnov, J. Phys.: Condens. Matter 14, 6989 (2002)

    Article  ADS  Google Scholar 

  9. M.J. Tambe, N. Bonini, N. Marzari, Phys. Rev. B 77, 172102 (2008)

    Article  ADS  Google Scholar 

  10. Li Li, Shao Jian-Li, Li Yan-Fang, Duan Su-Qing, Liang Jiu-Qing, Chin. Phys. B 21, 026402 (2012)

    Article  ADS  Google Scholar 

  11. H. Olijnyk, W.B. Holzapfel, Phys. Lett. A 100, 191 (1984)

    Article  ADS  Google Scholar 

  12. S. Arapan, H. Mao, R. Ahuja, Proc. Natl. Acad. Sci. 105, 20627 (2008)

    Article  ADS  Google Scholar 

  13. A.M. Teweldeberhan, S.A. Bonev, Phys. Rev. B 78, 140101 (2008)

    Article  ADS  Google Scholar 

  14. R. Ahuja, O. Eriksson, J.M. Wills, B. Johansson, Phys. Rev. Lett. 75, 3473 (1995)

    Article  ADS  Google Scholar 

  15. H.L. Skriver, Phys. Rev. Lett. 49, 1768 (1982)

    Article  ADS  Google Scholar 

  16. F. Jona, P.M. Marcus, J. Phys.: Condens. Matter 18, 4623 (2006)

    Article  ADS  Google Scholar 

  17. R.M. Wentzcovitch, H. Krakauer, Phys. Rev. B 42, 4563 (1990)

    Article  ADS  Google Scholar 

  18. A.N. Sofronkov, V.A. Drozdov, V.V. Pozhivatenko, The Physics of Metals and Metallography (Pergamon Press, 1992), Vol. 74, p. 140 (Engl. Transl.)

  19. V.L. Sliwko, P. Mohn, K. Schwarz, P. Blaha, J. Phys.: Condens. Matter 8, 799 (1996)

    Article  ADS  Google Scholar 

  20. S.L. Qiu, P.M. Marcus, J. Phys.: Condens. Matter 21, 435403 (2009)

    Article  ADS  Google Scholar 

  21. P.M. Marcus, S.L. Qiu, J. Phys.: Condens. Matter 21, 125404 (2009)

    Article  ADS  Google Scholar 

  22. P.M. Marcus, S.L. Qiu, J. Phys.: Condens. Matter 21, 115401 (2009)

    Article  ADS  Google Scholar 

  23. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001)

  24. P. Blaha, K. Schwarz, P. Sorantin, Comput. Phys. Commun. 59, 399 (1990)

    Article  ADS  Google Scholar 

  25. K. Gaal-Nagy, A. Bauer, M. Schmitt, K. Karch, P. Pavone, D. Strauch, Phys. Stat. Sol. B 211, 275 (1999)

    Article  ADS  Google Scholar 

  26. M. Hebbache, M. Mattesini, J. Szeftel, Phys. Rev. B 63, 205201 (2001)

    Article  ADS  Google Scholar 

  27. J. Behler, R. Martoòák, D. Donadio, M. Parrinello, Phys. Stat. Sol. B 245, 2618 (2008)

    Article  ADS  Google Scholar 

  28. V.P. Sakhnenko, V.M. Talanov, Fiz. Tverd. Tela (Leningrad) 21, 2435 (1979) [Sov. Phys. Solid State 21, 1401 (1979)]

    Google Scholar 

  29. J. Chang, Y. Cheng, M. Fu, J. At. Mol. Sci. 1, 243 (2010)

    Google Scholar 

  30. K. Mizushima, S. Yip, E. Kaxiras, Phys. Rev. B 50, 14952 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, S.L., Marcus, P.M. Saddle-point equilibrium lines between fcc and bcc phases in Al and Ca from first principles. Eur. Phys. J. B 86, 425 (2013). https://doi.org/10.1140/epjb/e2013-40460-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40460-1

Keywords

Navigation