Skip to main content
Log in

Frequency enhancement in coupled noisy excitable elements: effects of network topology

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Coupled excitable elements in the presence of noise can exhibit oscillatory behavior with non-trivial frequency dependence as the coupling strength of the system increases. The phenomenon of frequency enhancement (FE) occurs in some coupling regime, in which the elements can oscillate with a frequency higher than their uncoupled frequencies. In this paper, details of the FE are investigated by simulations of the FitzHugh-Nagumo model with different network topologies. It is found that the characteristics of FE, such as the maximal enhancement coupling, enhancement level etc, are functions of the network topology and spatial dimensions. The effect of excitability and the spatio-temporal patterns during FE are investigated to provide an intuitive picture for the enhancement mechanism. Interestingly, some of these characteristics of FE can be described by scaling laws; suggesting the existence of universality in the FE phenomenon. The relevance of these results to biological rhythms are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  2. A.S. Pikovsky, J. Kürths, Phys. Rev. Lett. 78, 775 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Z. Liu, Y.-C. Lai, A. Nachman, Phys. Lett. A 297, 75 (2002)

    Article  ADS  MATH  Google Scholar 

  4. Z. Liu, Y.-C. Lai, A. Nachman, Int. J. Bifurc. Chaos 14, 1655 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Y.-C. Lai, Z. Liu, A. Nachman, L. Zhu, Int. J. Bifurc. Chaos 14, 3519 (2004)

    Article  MATH  Google Scholar 

  6. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer-Verlag, Berlin, 1984)

  7. R.E. Mirollo, S.H. Strogatz, SIAM J. Appl. Math. 50, 1645 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Daido, S. Matsumoto, Europhys. Lett. 64, 613 (2003)

    Article  ADS  Google Scholar 

  9. W.Y. Chiang, P.Y. Lai, C.K. Chan, Phys. Rev. Lett. 106, 254102 (2011)

    Article  ADS  Google Scholar 

  10. J.A. Mohawk, J.S. Takahashi, Trends Neurosci. 34, 349 (2011)

    Article  Google Scholar 

  11. W. Chen et al., Europhys. Lett. 86, 18001 (2009)

    Article  ADS  Google Scholar 

  12. R. FitzHugh, Biophys. J. 1, 445 (1961)

    Article  ADS  Google Scholar 

  13. J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE. 50, 2061 (1962)

    Article  Google Scholar 

  14. A. Hodgkin, A. Huxley, J. Physiol. 117 500 (1952)

    Google Scholar 

  15. H. Risken et al., The Fokker-Planck Equation (Springer, Berlin, 1989)

  16. C. Zhou, J. Kürths, B. Hu, Phys. Rev. Lett. 87, 098101 (2001)

    Article  ADS  Google Scholar 

  17. C. Zhou, J. Kürths, B. Hu, Phys. Rev. E 67, 030101(R) (2003)

    ADS  Google Scholar 

  18. P. Erdös, A. Renyi, Publicationes Mathematicae 6, 290 (1959)

    MATH  Google Scholar 

  19. A.-L. Barabasi, R. Albert, Rev. Mod. Phys. 74, 47 (2000)

    MathSciNet  Google Scholar 

  20. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambrige university press, Cambrige, 2003)

  21. A.T. Winfree, The Geometry of Biological Time, 2nd edn. (Springer-Verlag, 2001)

  22. M.R. Boyett, H. Honjo, I. Kodama, Cardiovescular Res. 47, 658 (2000)

    Article  Google Scholar 

  23. R.Y. Moore, J.C. Speh, R.K. Leak, Cell Tissue Res. 309, 89 (2002)

    Article  Google Scholar 

  24. L.C. Jia, M. Sano, P.-Y. Lai, C.K. Chan, Phys. Rev. Lett. 93, 088101 (2004)

    Article  ADS  Google Scholar 

  25. P.-Y. Lai, L.C. Jia, C.K. Chan, Phys. Rev. E 73, 051906 (2006)

    Article  ADS  Google Scholar 

  26. A. Kamkin, I. Kiseleva, I. Lozinsky, H. Scholz, Basic Res. Cardiol. 100, 337 (2005)

    Article  Google Scholar 

  27. D.M. Cai, R.L. Winslow, D. Noble, IEEE Trans. Biomed. Eng. 41, 217 (1994)

    Article  Google Scholar 

  28. S. Yamaguchi et al., Science 302, 1408 (2003)

    Article  ADS  Google Scholar 

  29. Y. Yamauchi et al., Biol. Cybernetics 86, 147 (2002)

    Article  MATH  Google Scholar 

  30. T. Hachiro et al., BioSys. 90, 707 (2007)

    Article  Google Scholar 

  31. M. Oyamada et al., Exp. Cell Res. 212, 351 (1994)

    Article  Google Scholar 

  32. K. Kawahara et al., Biol. Rhythm Res. 33, 339 (2002)

    Article  Google Scholar 

  33. W.Y. Chiang, P.Y. Lai, unpublished

  34. B. Blasius, E. Montrio, J. Kurths, Phys. Rev. E 67, 035204(R) (2003)

    Article  ADS  Google Scholar 

  35. J.P. Fahrenbach et al., J. Physiol. 583, 565 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pik-Yin Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, WY., Lai, PY. & Chan, CK. Frequency enhancement in coupled noisy excitable elements: effects of network topology. Eur. Phys. J. B 86, 327 (2013). https://doi.org/10.1140/epjb/e2013-40422-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40422-7

Keywords

Navigation