Skip to main content
Log in

Divacancy complexes induced by Cu diffusion in Zn-doped GaAs

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Positron annihilation spectroscopy was applied to investigate the nature and thermal behavior of defects induced by Cu diffusion in Zn-doped p-type GaAs crystals. Cu atoms were intentionally introduced in the GaAs lattice through thermally activated diffusion from a thin Cu capping layer at 1100 °C under defined arsenic vapor pressure. During isochronal annealing of the obtained Cu-diffused GaAs in the temperature range of 450−850 K, vacancy clusters were found to form, grow and finally disappear. We found that annealing at 650 K triggers the formation of divacancies, whereas further increasing in the annealing temperature up to 750 K leads to the formation of divacancy-copper complexes. The observations suggest that the formation of these vacancy-like defects in GaAs is related to the out-diffusion of Cu. Two kinds of acceptors are detected with a concentration of about 1016 − 1017 cm−3, negative ions and arsenic vacancy copper complexes. Transmission electron microscopy showed the presence of voids and Cu precipitates which are not observed by positron measurements. The positron binding energy to shallow traps is estimated using the positron trapping model. Coincidence Doppler broadening spectroscopy showed the presence of Cu in the immediate vicinity of the detected vacancies. Theoretical calculations suggested that the detected defect is V Ga V As-2CuGa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.Y. Tan, U. Gösele, S. Yu, Crit. Rev. Solid State Mater. Sci. 17, 47 (1991)

    Article  ADS  Google Scholar 

  2. D.T.J. Hurle, J. Phys. Chem. Solids 40, 613 (1979)

    Article  ADS  Google Scholar 

  3. R.C. Newman, Semicond. Sci. Technol. 9, 1749 (1994)

    Article  ADS  Google Scholar 

  4. M. Elsayed, V. Bondarenko, K. Petters, J. Gebauer, R. Krause-Rehberg, J. Appl. Phys. 104, 103526 (2008)

    Article  ADS  Google Scholar 

  5. M. Elsayed, V. Bondarenko, K. Petters, R. Krause-Rehberg, J. Phys.: Conf. Ser. 265, 012005 (2011)

    Article  ADS  Google Scholar 

  6. M. Elsayed, R. Krause-Rehberg, W. Anwand, M. Butterling, B. Korff, Phys. Rev. B 84, 195208 (2011)

    Article  ADS  Google Scholar 

  7. T.Y. Tan, H.M. You, U.M. Gösele, Appl. Phys. A 56, 249 (1993)

    Article  ADS  Google Scholar 

  8. G.A. Baraff, M. Schlüter, Phys. Rev. B 33, 7346 (1986)

    Article  ADS  Google Scholar 

  9. D.J. Chadi, Mater. Sci. Forum 258-263, 1321 (1997)

    Article  Google Scholar 

  10. C. Domke, P. Ebert, M. Heinrich, K. Urban, Phys. Rev. B 54, 10288 (1996)

    Article  ADS  Google Scholar 

  11. J. Gebauer, R. Krause-Rehberg, C. Domke, Ph. Ebert, K. Urban, T.E.M. Staab, Phys. Rev. B 63, 045203 (2001)

    Article  ADS  Google Scholar 

  12. R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors (Springer, Berlin, 1999)

  13. P. Hautojärvi, in Positrons in Solids, Topics in Current Physics, edited by P. Hautojärvi (Springer, Heidelberg, 1979), Vol. 12

  14. K.G. Lynn, in Positron Solid State Physics, edited by W. Brandt, A. Dupasquier (North-Holand, Amsterdam, 1983)

  15. M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66, 841 (1994)

    Article  ADS  Google Scholar 

  16. R. Krause-Rehberg, H.S. Leipner, T. Abgarjan, A. Polity, Appl. Phys. A 66, 599 (1998)

    Article  ADS  Google Scholar 

  17. S. Fujii, S. Tanigawa, Hyperfine Interact. 79, 719 (1993)

    Article  ADS  Google Scholar 

  18. K. Saarinen, P. Hautojärvi, P. Lanki, C. Corbel, Phys. Rev. B 44, 10585 (1991)

    Article  ADS  Google Scholar 

  19. R. Krause-Rehberg, H.S. Leipner, A. Kupsch, A. Polity, Th. Drost, Phys. Rev. B 49, 2385 (1994)

    Article  ADS  Google Scholar 

  20. M. Alatalo, H. Kauppinen, K. Saarinen, M.J. Puska, J. Mäkinen, P. Hautojärvi, R.M. Nieminen, Phys. Rev. B 51, 4176 (1995)

    Article  ADS  Google Scholar 

  21. P. Asoka-Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielsen, K.G. Lynn, Phys. Rev. Lett. 77, 2097 (1996)

    Article  ADS  Google Scholar 

  22. J. Gebauer, M. Lausmann, T.E.M. Staab, R. Krause-Rehberg, M. Hakala, M.J. Puska, Phys. Rev. B 60, 1464 (1999)

    Article  ADS  Google Scholar 

  23. K. Saarinen, P. Hautojärvi, A. Vehanen, R. Krause, G. Dlubek, Phys. Rev. B 39, 5287 (1989)

    Article  ADS  Google Scholar 

  24. R.N. Hall, J.H. Racette, J. Appl. Phys. 35, 379 (1964)

    Article  ADS  Google Scholar 

  25. H.S. Leipner, R.F. Scholz, F. Syrowatka, J. Schreiber, P. Werner, Philos. Mag. A 79, 2785 (1999)

    Article  ADS  Google Scholar 

  26. R. Leon, P. Werner, K.M. Yu, M. Kaminska, E.R. Weber, Appl. Phys. A 61, 7 (1995)

    Article  ADS  Google Scholar 

  27. N.A. Gokcen, Bull. Alloy Phase Diagrams 10, 11 (1989)

    Article  Google Scholar 

  28. J. Kansy, Nucl. Instr. Meth. A 374, 235 (1996)

    Article  ADS  Google Scholar 

  29. F. Börner, S. Eichler, A. Polity, R. Krause-Rehberg, R. Hammer, M. Jurisch, Appl. Surf. Sci. 149, 151 (1999)

    Article  Google Scholar 

  30. V. Bondarenko, K. Petters, R. Krause-Rehberg, J. Gebauer, H.S. Leipner, Physica B 308-310, 792 (2001)

    Article  ADS  Google Scholar 

  31. M. Elsayed, R. Krause-Rehberg, B. Korff, S. Richter, H.S. Leipner, J. Appl. Phys. 113, 094902 (2013)

    Article  ADS  Google Scholar 

  32. M. Puska, R. Nieminen, J. Phys. F 13, 333 (1983)

    Article  ADS  Google Scholar 

  33. M. Alatalo, B. Barbiellini, M. Hakala, H. Kauppinen, T. Korhonen, M.J. Puska, K. Saarinen, P. Hautojärvi, R.M. Nieminen, Phys. Rev. B 54, 2397 (1996)

    Article  ADS  Google Scholar 

  34. B. Barbiellini, M.J. Puska, T. Korhonen, A. Harju, T. Torsti, R.M. Nieminen, Phys. Rev. B 53, 16201 (1996)

    Article  ADS  Google Scholar 

  35. M.J. Puska, C. Corbel, Phys. Rev. B 38, 9874 (1988)

    Article  ADS  Google Scholar 

  36. B. Pagh, H.E. Hansen, B. Nielsen, G. Trumphy, K. Petersen, Appl. Phys. A 33, 255 (1984)

    Article  ADS  Google Scholar 

  37. M. Manninen, R.M. Nieminen, Appl. Phys. A 26, 93 (1981)

    Article  ADS  Google Scholar 

  38. V. Bondarenko, K. Petters, R. Krause-Rehberg, J. Gebauer, H.S. Leipner, Physica B 308-310, 792 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Elsayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsayed, M., Krause-Rehberg, R., Korff, B. et al. Divacancy complexes induced by Cu diffusion in Zn-doped GaAs. Eur. Phys. J. B 86, 358 (2013). https://doi.org/10.1140/epjb/e2013-40414-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40414-7

Keywords

Navigation