Skip to main content
Log in

Hund and pair-hopping signatures in transport properties of degenerate nanoscale devices

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the signature of a complete Coulomb interaction in transport properties of double-orbital nanoscale devices. We analyze the specific effects of Hund exchange and pair hopping terms, calculating in particular stability diagrams. It turns out that a crude model, with partial Coulomb interaction, may lead to a misinterpretation of experiments. In addition, it is shown that spectral weight transfers induced by gate and bias voltages strongly influence charge current. The low temperature regime is also investigated, displaying inelastic cotunneling associated with the exchange term, as well as Kondo conductance enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007)

    Article  ADS  Google Scholar 

  2. J. Nygard, D.H. Cobden, P.E. Lindelof, Nature 408, 342 (2000)

    Article  ADS  Google Scholar 

  3. J. Park et al., Nature 417, 722 (2002)

    Article  ADS  Google Scholar 

  4. P.W. Anderson, Phys. Rev. 124, 41 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  5. Y. Meir, N.S. Wingreen, P.A. Lee, Phys. Rev. Lett. 70, 2601 (1993)

    Article  ADS  Google Scholar 

  6. S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, L.P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996)

    Article  ADS  Google Scholar 

  7. L.P. Kouwenhoven, T.H. Oosterkamp, M.W.S. Danoesastro, M. Eto, D.G. Austing, T. Honda, S. Tarucha, Science 278, 1788 (1997)

    Article  ADS  Google Scholar 

  8. L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Rep. Prog. Phys. 64, 701 (2001)

    Article  ADS  Google Scholar 

  9. E.A. Osorio, K. Moth-Poulsen, H.S.J. van der Zant, J. Paaske, P. Hedegård, K. Flensberg, J. Bendix, T. Bjørnholm, Nano Lett. 10, 105 (2010)

    Article  ADS  Google Scholar 

  10. S. Moriyama, T. Fuse, M. Suzuki, Y. Aoyagi, K. Ishibashi, Phys. Rev. Lett. 94, 186806 (2005)

    Article  ADS  Google Scholar 

  11. T. Kita, R. Sakano, T. Ohashi, S. Suga, J. Phys. Soc. Jpn 77, 094707 (2008)

    Article  ADS  Google Scholar 

  12. D.E. Logan, C.J. Wright, M.R. Galpin, Phys. Rev. B 80, 125117 (2009)

    Article  ADS  Google Scholar 

  13. S. Florens, A. Freyn, N. Roch, W. Wernsdorfer, F. Balestro, P. Roura-Bas, A.A. Aligia, J. Phys.: Condens. Matter 23, 243202 (2011)

    Article  ADS  Google Scholar 

  14. R. Sakano, Y. Nishikawa, A. Oguri, A.C. Hewson, S. Tarucha, Phys. Rev. Lett. 108, 266401 (2012)

    Article  ADS  Google Scholar 

  15. Y. Nishikawa, A.C. Hewson, Phys. Rev. B 86, 245131 (2012)

    Article  ADS  Google Scholar 

  16. J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959)

    Article  ADS  Google Scholar 

  17. E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001)

    Article  ADS  Google Scholar 

  18. A.M. Oleś, G. Khaliullin, P. Horsch, L.F. Feiner, Phys. Rev. B 72, 214431 (2005)

    Article  ADS  Google Scholar 

  19. M. Leijnse, M.R. Wegewijs, M.H. Hettler, Phys. Rev. Lett. 103, 156803 (2009)

    Article  ADS  Google Scholar 

  20. X. Wang, A.J. Millis, Phys. Rev. B 81, 045106 (2010)

    Article  ADS  Google Scholar 

  21. S. Yang, X. Wang, S. Das Sarma, Phys. Rev. B 83, 161301(R) (2011)

    ADS  Google Scholar 

  22. W.-C. Lee, P.W. Phillips, Phys. Rev. B 84, 115101 (2011)

    Article  ADS  Google Scholar 

  23. N.S. Wingreen, Y. Meir, Phys. Rev. B 49, 11040 (1994)

    Article  ADS  Google Scholar 

  24. M.H. Hettler, J. Kroha, S. Hershfield, Phys. Rev. B 58, 5649 (1998)

    Article  ADS  Google Scholar 

  25. J.S. Lim, M.-S. Choi, M.Y. Choi, R. López, R. Aguado, Phys. Rev. B 74, 205119 (2006)

    Article  ADS  Google Scholar 

  26. P. Roura-Bas, Phys. Rev. B 81, 155327 (2010)

    Article  ADS  Google Scholar 

  27. L. Tosi, P. Roura-Bas, A.M. Llois, A.A. Aligia, Physica B 407, 3263 (2012)

    Article  ADS  Google Scholar 

  28. M.B.J. Meinders, H. Eskes, G.A. Sawatzky, Phys. Rev. B 48, 3916 (1993)

    Article  ADS  Google Scholar 

  29. P. Lombardo, G. Albinet, Phys. Rev. B 65, 115110 (2002)

    Article  ADS  Google Scholar 

  30. S. De Franceschi, S. Sasaki, J.M. Elzerman, W.G. van der Wiel, S. Tarucha, L.P. Kouwenhoven, Phys. Rev. Lett. 86, 878 (2001)

    Article  ADS  Google Scholar 

  31. V.N. Golovach, D. Loss, Phys. Rev. B 69, 245327 (2004)

    Article  ADS  Google Scholar 

  32. S. Sasaki, S. De Franceschi, J.M. Elzerman, W.G. van der Wiel, M. Eto, S. Tarucha, L.P. Kouwenhoven, Nature 405, 764 (2000), and references therein

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lombardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azema, J., Daré, AM. & Lombardo, P. Hund and pair-hopping signatures in transport properties of degenerate nanoscale devices. Eur. Phys. J. B 86, 319 (2013). https://doi.org/10.1140/epjb/e2013-40177-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40177-1

Keywords

Navigation