Skip to main content
Log in

Screw dislocation-induced influence of transverse modes on Hall conductivity

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The Hall conductivity of an electron gas on an interface showing a topological defect called screw dislocation is investigated. This kind of defect induces a singular torsion on the medium which in turn induces transverse modes in the quantum Hall effect. It is shown that this topology decreases the plateaus’ widths and shifts the steps in the Hall conductivity to lower magnetic fields. The Hall conductivity is neither enhanced nor diminished by the presence of this kind of defect alone. We also consider the presence of two defects on a sample, a screw dislocation together with a disclination. For a specific value of deficit angle, there is a reduction in the Hall conductivity. For an excess of angle, the steps shift to higher magnetic fields and the Hall conductivity is enhanced. Our work could be tested only in common semiconductors but we think it opens a road to the investigation on how topological defects can influence other classes of Hall effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.v. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  2. W. Poirier, F. Schopfer, Eur. Phys. J. Special Topics 172, 207 (2009)

    Article  ADS  Google Scholar 

  3. W. Poirier, F. Schopfer, Int. J. Mod. Phys. B 23, 2779 (2009)

    Article  ADS  Google Scholar 

  4. M.O. Goerbig, arXiv:0909.1998v2 [cond-mat.mes-hall] (2009)

  5. K.S. Novoselov, A.K. Geim, S.V. Morosov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  6. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  7. Z. Jianga, Y. Zhanga, Y.-W. Tan, H.L. Stormer, P. Kim, Solid State Commun. 143, 14 (2007)

    Article  ADS  Google Scholar 

  8. D.V. Bulaev, V.A. Geyler, V.A. Margulis, Physica B 337, 180 (2003)

    Article  ADS  Google Scholar 

  9. D.V. Bulaev, V.A. Margulis, Eur. Phys. J. B 36, 183 (2003)

    Article  ADS  Google Scholar 

  10. A. Lorke, S. Böhm, W. Wegscheider, Superlattices and Microstructures 33, 347 (2003)

    Article  ADS  Google Scholar 

  11. L.I. Magarill, A.V. Chaplik, M.V. Entin, Phys.-Usp. 48, 953 (2005)

    Article  ADS  Google Scholar 

  12. A.B. Vorobe’v, K.J. Friedland, H. Kostial, R. Hey, U. Jahn, E. Wiebicke, J.S. Yukecheva, V.Y. Prinz, Phys. Rev. E 75, 205309 (2007)

    Article  ADS  Google Scholar 

  13. A. Jellal, Nucl. Phys. B 804, 361 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. K.J. Friedland, A. Siddiki, R. Hey, H. Kostial, A. Riedel, D.K. Maude, Phys. Rev. B 79, 125320 (2009)

    Article  ADS  Google Scholar 

  15. C. Filgueiras, B.F. de Oliveira, Ann. Phys. 523, 898 (2011)

    Article  Google Scholar 

  16. S. Mendach, O. Schumacher, Ch. Heyn, S. Schnüll, H. Welsch, W. Hansen, Physica E 23, 274 (2004)

    Article  ADS  Google Scholar 

  17. V.Ya. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovskiy, V.V. Preobrazhenskii, M.A. Putyato, T.A. Gavrilova, Physica E 6, 828 (2000)

    Article  ADS  Google Scholar 

  18. V.Ya. Prinz, D. Grützmacher, A. Beyer, C. David, B. Ketterer, E. Deccard, in Proceedings of Ninth International Symposium on Nanostructures: Physics and Technology, St. Petersburg, Russia, 18-22 June 2001, p. 13

  19. Y.N. Joglekar, A. Saxena, Phys. Rev. B 80, 153405 (2009)

    Article  ADS  Google Scholar 

  20. R. Dandoloff, A. Saxena, B. Jensen, Phy. Rev. A 79, 033404 (2009)

    Article  ADS  Google Scholar 

  21. R. Dandoloff, A. Saxena, B. Jensen, Phys. Rev. A 81, 014102 (2010)

    Article  ADS  Google Scholar 

  22. V. Atanasov, A. Saxena, Phys. Rev. B 81, 205409 (2010)

    Article  ADS  Google Scholar 

  23. M.J. Bueno, C. Furtado, A.M. de M. Carvalho, Eur. Phys. J. B 85, 53 (2012)

    Article  ADS  Google Scholar 

  24. M.O. Katanaev, Phys.-Usp. 48, 675 (2005)

    Article  ADS  Google Scholar 

  25. C. Furtado, B.G.C. da Cunha, F. Moraes, E.R.B. de Mello, V.B. Bezerra, Phys. Lett. A 195, 90 (1994)

    Article  ADS  Google Scholar 

  26. C. Furtado, F. Moraes, Europhys. Lett. 45, 279 (1999)

    Article  ADS  Google Scholar 

  27. C. Filgueiras, E.O. Silva, W. Oliveira, F. Moraes, Ann. Phys. 325, 2529 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. A.A. de Lima, C. Filgueiras, Eur. Phys. J. B 85, 401 (2012)

    Article  ADS  Google Scholar 

  29. M.G. Alford, J.M. Russell, F. Wilczek, Nucl. Phys. B 328, 140 (1989)

    Article  ADS  Google Scholar 

  30. P.S. Gerbert, Phys. Rev. D 40, 1346 (1989)

    Article  ADS  Google Scholar 

  31. P.S. Gerbert, R. Jackiw, Commun. Math. Phys. 124, 229 (1989)

    Article  MATH  ADS  Google Scholar 

  32. C.R. Hagen, Phys. Rev. Lett. 64, 503 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. C.R. Hagen, Phys. Rev. D 42, 5935 (1993)

    Article  ADS  Google Scholar 

  34. C.R. Hagen, D.K. Park, Ann. Phys. 251, 45 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  35. K. Kowalski, K. Podlaski, J. Rembieliński, Phys. Rev. A 66, 032118 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  36. C. Filgueiras, F. Moraes, Phys. Lett. A 361, 13 (2007)

    Article  MATH  ADS  Google Scholar 

  37. C. Filgueiras, F. Moraes, Ann. Phys. 323, 3150 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. F.M. Andrade, E.O. Silva, M. Pereira, Phys. Rev. D 85, 041701 (2012)

    Article  ADS  Google Scholar 

  39. C. Filgueiras, F.M. Andrade, E.O. Silva, J. Math. Phys. 53, 122106 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  40. F.M. Andrade, E.O. Silva, Phys. Lett. B 719, 467 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  41. G. de A. Marques, C. Furtado, V.B. Bezerra, F. Moraes, J. Phys. A 34, 5945 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleverson Filgueiras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lima, A., Poux, A., Assafrão, D. et al. Screw dislocation-induced influence of transverse modes on Hall conductivity. Eur. Phys. J. B 86, 485 (2013). https://doi.org/10.1140/epjb/e2013-40160-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40160-x

Keywords

Navigation