Skip to main content
Log in

Carbon nanotubes as heat dissipaters in microelectronics

The European Physical Journal B Aims and scope Submit manuscript

Abstract

We review our recent modelling work of carbon nanotubes as potential candidates for heat dissipation in microelectronics cooling. In the first part, we analyze the impact of nanotube defects on their thermal transport properties. In the second part, we investigate the loss of thermal properties of nanotubes in presence of an interface with various substances, including air and water. Comparison with previous works is established whenever is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.K. Roy et al., ACS Appl. Mater. Inter. 4, 545 (2012)

    Article  Google Scholar 

  2. S. Berber, Y.-K. Kwon, D. Tománek, Phys. Rev. Lett. 84, 4613 (2000)

    Article  ADS  Google Scholar 

  3. A.A. Balandin, Nat. Mater. 10, 569 (2011)

    Article  ADS  Google Scholar 

  4. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 59, R2514 (1999)

    Article  ADS  Google Scholar 

  5. D. Donadio, G. Galli, Phys. Rev. Lett. 99, 255502 (2007)

    Article  ADS  Google Scholar 

  6. D. Donadio, G. Galli, Phys. Rev. Lett. 103, 149901(E) (2009)

    Article  ADS  Google Scholar 

  7. P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001)

    Article  ADS  Google Scholar 

  8. P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science 287, 1801 (2000)

    Article  ADS  Google Scholar 

  9. J. Enkovaara et al., J. Phys.: Condens. Matter 22, 253202 (2010)

    Article  ADS  Google Scholar 

  10. J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Phys. Rev. B 71, 035109 (2005)

    Article  ADS  Google Scholar 

  11. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  12. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  13. T. Markussen, R. Rurali, M. Brandbyge, A.-P. Jauho, Phys. Rev. B 74, 245313 (2006)

    Article  ADS  Google Scholar 

  14. J.D. Gale, A.L. Rohl, Mol. Simul. 29, 291 (2003)

    Article  MATH  Google Scholar 

  15. MATLAB, version 7.10.0 (R2010a) (The MathWorks Inc., 2010)

  16. N. Mingo, D.A. Stewart, D.A. Broido, D. Srivastava, Phys. Rev. B 77, 033418 (2008)

    Article  ADS  Google Scholar 

  17. M.S. Dresselhaus, P.C. Eklund, Adv. Phys. 49, 705 (2000)

    Article  ADS  Google Scholar 

  18. G.D. Mahan, G.S. Jeon, Phys. Rev. B 70, 075405 (2004)

    Article  ADS  Google Scholar 

  19. T. Markussen, A.-P. Jauho, M. Brandbyge, Phys. Rev. B 79, 035415 (2009)

    Article  ADS  Google Scholar 

  20. T. Markussen, R. Rurali, A.-P. Jauho, M. Brandbyge, Phys. Rev. Lett. 99, 076803 (2007)

    Article  ADS  Google Scholar 

  21. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  MATH  Google Scholar 

  22. L.X. Benedict, S.G. Louie, M.L. Cohen, Solid State Commun. 100, 177 (1996)

    Article  ADS  Google Scholar 

  23. S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000)

    Article  ADS  Google Scholar 

  24. D.W. Brenner et al., J. Phys.: Condens. Matter 14, 783 (2002)

    Article  ADS  Google Scholar 

  25. D.W. Brenner, Phys. Rev. B 42, 9458 (1990)

    Article  ADS  Google Scholar 

  26. A.A. Rafati, S.M. Hashemianzadeh, Z.B. Nojini, N. Naghshineh, J. Comput. Chem. 31, 1443 (2010)

    Google Scholar 

  27. J. Yang, Y. Ren, A. Tian, H. Sun, J. Phys. Chem. B 104, 4951 (2000)

    Article  Google Scholar 

  28. V.R. Cervellera, M. Albertí, F. Huarte-Larrañaga, Int. J. Quantum Chem. 108, 1714 (2008)

    Article  ADS  Google Scholar 

  29. P. Giannozzi, R. Car, G. Scoles, J. Chem. Phys. 118, 1003 (2003)

    Article  ADS  Google Scholar 

  30. G. Arora, S.I. Sandler, J. Chem. Phys. 124, 084702 (2006)

    Article  ADS  Google Scholar 

  31. M.J. Bojan, A.V. Vernov, W.A. Steele, Langmuir 8, 901 (1992)

    Article  Google Scholar 

  32. M. Arab, F. Picaud, M. Devel, C. Ramseyer, C. Girardet, Phys. Rev. B 69, 165401 (2004)

    Article  ADS  Google Scholar 

  33. Y. Wu, H.L. Tepper, G.A. Voth, J. Chem. Phys. 124, 024503 (2006)

    Article  ADS  Google Scholar 

  34. R.W. Hockney, J.W. Eastwood Particle-Particle/Particle-Mesh (P3M) Algorithms, Computer Simulation using Particles (CRC Press, 1988)

  35. J.M. García-Lastra, D.J. Mowbray, K.S. Thygesen, A. Rubio, K.W. Jacobsen, Phys. Rev. B 81, 245429 (2010)

    Article  ADS  Google Scholar 

  36. J. Kotakoski, A.V. Krasheninnikov, K. Nordlund, Phys. Rev. B 74, 245420 (2006)

    Article  ADS  Google Scholar 

  37. S. Berber, A. Oshiyama, Phys. Rev. B 77, 165405 (2008)

    Article  ADS  Google Scholar 

  38. S. Berber, A. Oshiyama, Physica B 376–377, 272 (2006)

    Article  Google Scholar 

  39. A.J. Lu, B.C. Pan, Phys. Rev. Lett. 92, 105504 (2004)

    Article  ADS  Google Scholar 

  40. A.V. Krasheninnikov, P.O. Lehtinen, A.S. Foster, R.M. Nieminen, Chem. Phys. Lett. 418, 132 (2006)

    Article  ADS  Google Scholar 

  41. R.G. Amorim, A. Fazzio, A. Antonelli, F.D. Novaes, A.J.R. Da Silva, Nano Lett. 7, 2459 (2007)

    Article  ADS  Google Scholar 

  42. J.A. Thomas, J.E. Turney, R.M. Iutzi, C.H. Amon, A.J.H. McGaughey, Phys. Rev. B 81, 081411 (2010)

    Article  ADS  Google Scholar 

  43. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez Paz, A., García-Lastra, J., Markussen, T. et al. Carbon nanotubes as heat dissipaters in microelectronics. Eur. Phys. J. B 86, 234 (2013). https://doi.org/10.1140/epjb/e2013-40113-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40113-5

Keywords

Navigation