Skip to main content

Advertisement

Log in

Effect of thermal inhomogeneity on the performance of a Brownian heat engine

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We explore the effect of thermal inhomogeneity on the performance of a Brownian heat engine by considering exactly solvable models. We first consider a Brownian heat engine which is modeled as a Brownian particle in a ratchet potential moving through a highly viscous medium driven by the thermal kick it receives from a linearly decreasing background temperature. We show that even though the energy transfer due to kinetic energy is neglected, Carnot efficiency cannot be achieved at quasistatic limit. At quasistatic limit, the efficiency for such a Brownian heat engine approaches the efficiency of endoreversible engine η = 1 − √T c /T h [F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)]. Moreover, the dependence of the current, the efficiency and the coefficient of performance of the refrigerator on the model parameters is also explored via Brownian dynamic simulations and analytically. We show that such a Brownian heat engine has a higher performance when acting as a refrigerator than when operating as a device subjected to a piecewise constant temperature [M. Asfaw, M. Bekele, Eur. Phys. J. B 38, 457 (2004), M. Asfaw, M. Bekele, Physica A 384, 346 (2007)]. Furthermore, for a Brownian heat engine driven by a piecewise constant temperature, we show that systematic removal of the inhomogeneous medium leads to a homogeneous medium with a uniform temperature where the effect of temperature inhomogeneity is replaced by an effective load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hondou, K. Sekimoto, Phys. Rev. E 62, 6021 (2000)

    Article  ADS  Google Scholar 

  2. A.G. Marin, J.M. Sancho, Phys. Rev. E 74, 062102 (2006)

    Article  ADS  Google Scholar 

  3. N. Li, F. Zhan, P. Hänggi, B. Li, Phys. Rev. E 80, 011125 (2009)

    Article  ADS  Google Scholar 

  4. N. Li, P. Hänggi, B. Li, Europhys. Lett. 84, 40009 (2008)

    Article  ADS  Google Scholar 

  5. F. Zhan, N. Li, S. Kohler, P. Hänggi, Phys. Rev. E 80, 061115 (2009)

    Article  ADS  Google Scholar 

  6. M. Büttiker, Z. Phys. B 68, 161 (1987)

    Article  ADS  Google Scholar 

  7. N.G. van Kampen, IBM J. Res. Dev. 32, 107 (1988)

    Article  Google Scholar 

  8. R. Landauer, J. Stat. Phys. 53, 233 (1988)

    Article  ADS  Google Scholar 

  9. R. Landauer, Phys. Rev. A 12, 636 (1975)

    Article  ADS  Google Scholar 

  10. R. Landauer, Helv. Phys. Acta 56, 847 (1983)

    Google Scholar 

  11. P. Hänggi, F. Marchesoni, F. Nori, Ann. Phys. 14, 51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  13. P. Reimann, R. Bartussek, R. Haussler, P. Hänggi, Phys. Lett. A 215, 26 (1996)

    Article  ADS  Google Scholar 

  14. M. Asfaw, M. Bekele, Eur. Phys. J. B 38, 457 (2004)

    Article  ADS  Google Scholar 

  15. M. Asfaw, M. Bekele, Phys. Rev. E 72, 056109 (2005)

    Article  ADS  Google Scholar 

  16. M. Asfaw, M. Bekele, Physica A 384, 346 (2007)

    Article  ADS  Google Scholar 

  17. M. Matsuo, S. Sasa, Physica A 276, 188 (1999)

    Article  ADS  Google Scholar 

  18. I. Derènyi, R.D. Astumian, Phys. Rev. E 59, R6219 (1999)

    Article  ADS  Google Scholar 

  19. I. Derènyi, M. Bier, R.D. Astumian, Phys. Rev. Lett 83, 903 (1999)

    Article  ADS  Google Scholar 

  20. J.M. Sancho, M.S. Miguel, D. Dürr, J. Stat. Phys. 28, 291 (1982)

    Article  ADS  MATH  Google Scholar 

  21. B.Q. Ai, H.Z. Xie, D.H. Wen, X.M. Liu, L.G. Liu, Eur. Phys. J. B 48, 101 (2005)

    Article  ADS  Google Scholar 

  22. M. Asfaw, Eur. Phys. J. B 65, 109 (2008)

    Article  ADS  Google Scholar 

  23. F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesfin Asfaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asfaw, M. Effect of thermal inhomogeneity on the performance of a Brownian heat engine. Eur. Phys. J. B 86, 189 (2013). https://doi.org/10.1140/epjb/e2013-40090-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40090-7

Keywords

Navigation