Skip to main content
Log in

Magnetic properties of iron oxide nanoparticles investigated by nanoSQUIDs

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Magnetization measurements of Fe3O4 nanoparticles have been performed by using a nanosized superconducting quantum interference device (nanoSQUID). The nanosensor consists of a niobium loop having an area of 0.5 μm2 interrupted by two Dayem nanobridges. The device fabrication procedure is based on the electron beam lithography, thin film deposition and the lift-off technique. The characterization of the nanodevice at T = 4.2 K includes measurements of current-voltage, critical current vs. magnetic flux characteristic and flux noise. A proper feedback circuit has been employed to increase the dynamic range of the nanosensor. The magnetic nanoparticles under investigation have a diameter of 4 nm and 8 nm and were synthesized by thermal decomposition of metallorganic precursors in the presence of oleic acid and oleylamine as surfactants and organic solvent with high boiling point. Measurements of magnetization as a function of the external magnetic field for both nanoparticle diameters are reported at liquid helium temperature. In both cases, it can be observed an evident magnetic hysteresis indicating a blocking temperature well above 4.2 K. The reliability and the clarity of the reported measurement demonstrates that a low noise nanoSQUID is a powerful tool to investigate the properties of magnetic nano-objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Dormann, D. Fiorani, E. Tronc, in Advances in Chemical Physics, edited by I. Prigogine, S.A. Rice (Wiley, New York, 1997), Vol. 98, p. 283

  2. D. Peddis, M.V. Mansilla, S. Mørup, C. Cannas, A. Musinu, G. Piccaluga, F. D’ Orazio, F. Lucari, D. Fiorani, J. Phys. Chem. B 112, 8507 (2008)

    Article  Google Scholar 

  3. A. Sundaresan, C.N.R. Rao, Nano Today 4, 96 (2009)

    Article  Google Scholar 

  4. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)

    Article  Google Scholar 

  5. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D 36, R167 (2003)

    Article  ADS  Google Scholar 

  6. S.K.H. Lam, D.L. Tilbrook, Appl. Phys. Lett. 82, 1078 (2003)

    Article  ADS  Google Scholar 

  7. S.K.H. Lam, J.R. Clem, W. Yang, Nanotechnology 22, 455501 (2011)

    Article  ADS  Google Scholar 

  8. J.P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarçuhu, M. Monthioux, Nat. Nanotechnol. 1, 53 (2006)

    Article  ADS  Google Scholar 

  9. A.G.P. Troeman, H. Derking, B. Borger, G. Pleikies, B. Veldhuis, H. Hilgenkamp, Nano Lett. 7, 2152 (2007)

    Article  ADS  Google Scholar 

  10. L. Hao, J.C. Macfarlane, J.C. Gallop, D. Cox, J. Beyer, D. Drung, T. Schuring, Appl. Phys. Lett. 92, 192507 (2008)

    Article  ADS  Google Scholar 

  11. C. Granata, E. Esposito, A. Vettoliere, L. Petti, M. Russo, Nanotechnology 19, 275501 (2008)

    Article  ADS  Google Scholar 

  12. W. Wernsdorfer, Supercond. Sci. Technol. 22, 064013 (2009)

    Article  ADS  Google Scholar 

  13. L. Chen, W. Wernsdorfer, C. Lampropoulos, G. Christou, I. Chiorescu, Nanotechnology 21, 405504 (2010)

    Article  Google Scholar 

  14. L. Hao et al., Appl. Phys. Lett. 98, 092504 (2011)

    Article  ADS  Google Scholar 

  15. M.B. Ketchen, D.D. Awschalom, W.J. Gallagher, A.W. Kleinsasser, R.L. Sandstrom, J.R. Bozen, B. Bumble, IEEE Trans. Magn. 25, 1212 (1989)

    Article  ADS  Google Scholar 

  16. C. Granata, A. Vettoliere, P. Walke, C. Nappi, M. Russo, J. Appl. Phys. 106, 023925 (2009)

    Article  ADS  Google Scholar 

  17. D.L. Tilbrook, Supercond. Sci. Technol. 22, 064003 (2009)

    Article  ADS  Google Scholar 

  18. C.P. Foley, H. Hilgenkamp, Supercond. Sci. Technol. 22, 064001 (2009)

    Article  ADS  Google Scholar 

  19. G.J. Podd, G.D. Hutchinson, D.A. Williams, D.G. Hasko, Phys. Rev. B 75, 134501 (2007)

    Article  ADS  Google Scholar 

  20. A.G.P. Troeman, S.H.W. van der Ploeg, E. Il’Ichev, H.-G. Meyer, A.A. Golubov, M.Yu. Kupriyanov, H. Hilgenkamp, Phys. Rev. B 77, 024509 (2008)

    Article  ADS  Google Scholar 

  21. C. Granata, A. Vettoliere, M. Russo, B. Ruggiero, Phys Rev. B 84, 224516 (2011)

    Article  ADS  Google Scholar 

  22. J. Nagel et al., Appl. Phys. Lett. 99, 032506 (2011)

    Article  ADS  Google Scholar 

  23. K. Hasselbach, D. Mailly, J.R. Kirtley, J. Appl. Phys. 91, 4432 (2002)

    Article  ADS  Google Scholar 

  24. C. Granata, A. Vettoliere, R. Russo, E. Esposito, M. Russo, B. Ruggiero, Appl. Phys. Lett. 94, 062503 (2009)

    Article  ADS  Google Scholar 

  25. C. Granata, A. Vettoliere, R. Russo, M. Russo, B. Ruggiero, Phys. Rev. B 83, 092504 (2011)

    Article  ADS  Google Scholar 

  26. R. Vijay, E.M. Levenson-Falk, D.H. Slichter, I. Siddiqi, Appl. Phys. Lett. 96, 223112 (2010)

    Article  ADS  Google Scholar 

  27. R. Russo, C. Granata, P. Walke, A. Vettoliere, E. Esposito, M. Russo, J. Nanopart. Res. 13, 5661 (2011)

    Article  Google Scholar 

  28. J. Clarke, A.I. Braginski, The SQUID Handbook: Applications of SQUIDs and SQUID Systems (Wiley-VCH, Weinheim, 2006), Vol. 1

  29. C. Cannas et al., Chem. Mater. 22, 3353 (2010)

    Article  Google Scholar 

  30. A. Floris, A. Ardu, A. Musinu, G. Piccaluga, A.M. Fadda, C. Sinico, C. Cannas, Soft Matter 7, 6239 (2011)

    Article  ADS  Google Scholar 

  31. D. Peddis, F. Orrù, A. Ardu, C. Cannas, A. Musinu, G. Piccaluga, Chem. Mater. 24, 1062 (2012)

    Article  Google Scholar 

  32. A.G. Roca, M.P. Morales, K. O’Grady, C.J. Serna, Nanotechnology 17, 2783 (2006)

    Article  ADS  Google Scholar 

  33. N. Perez et al., Nanotechnology 19, 475704 (2008)

    Article  ADS  Google Scholar 

  34. C.R. Vestal, Z.J. Zhang, Nano Lett. 3, 1739 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Russo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granata, C., Russo, R., Esposito, E. et al. Magnetic properties of iron oxide nanoparticles investigated by nanoSQUIDs. Eur. Phys. J. B 86, 272 (2013). https://doi.org/10.1140/epjb/e2013-40051-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40051-2

Keywords

Navigation