Skip to main content

Advertisement

Log in

Typical response of quantum pure states

The European Physical Journal B Aims and scope Submit manuscript

Abstract

The response of a quantum system in a pure state to an external force is investigated by reconsidering the standard statistical approach to quantum dynamics in the light of the statistical description of equilibrium based on typicality. We prove that the response of the large majority of quantum pure states subjected to the same arbitrary external perturbation tends to be close to the statistical response as the dimension of the Hilbert space increases. This is what we can term dynamical typicality. The theoretical analysis is substantiated by numerical simulations of the response of a spin system to a sudden quench of the external magnetic field. For the considered system we show that not only the system relaxes toward a new equilibrium state after the quench of the Hamiltonian but also that such a new equilibrium is compatible with the description of a thermal equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M.T.R. Kubo, N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1985)

  2. H. Spohn, Rev. Mod. Phys. 52, 569 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  3. D. Kohen, C.C. Marston, D.J. Tannor, J. Chem. Phys. 107, 5236 (1997)

    Article  ADS  Google Scholar 

  4. R. Kubo, J. Phys. Soc. Jpn 12, 570 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghì, Phys. Rev. Lett. 96, 050403 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Popescu, A.J. Short, A. Winter, Nat. Phys. 2, 754 (2006)

    Article  Google Scholar 

  7. P. Reimann, Phys. Rev. Lett. 99, 160404 (2007)

    Article  ADS  Google Scholar 

  8. P. Reimann, Phys. Rev. Lett. 101, 190403 (2008)

    Article  ADS  Google Scholar 

  9. N. Linden, S. Popescu, A.J. Short, A. Winter, Phys. Rev. E 79, 061103 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  10. B. d’Espagnat, Found. Phys. 20, 1147 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Gemmer, G. Mahler, Eur. Phys. J. D 17, 385 (2001)

    Article  ADS  Google Scholar 

  12. J. Gemmer, G. Mahler, Europhys. Lett. 59, 159 (2002)

    Article  ADS  Google Scholar 

  13. B. Fresch, G.J. Moro, J. Phys. Chem. A 113, 14502 (2009)

    Article  Google Scholar 

  14. A.Y. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover Publications Inc., New York, 1949)

  15. B. Fresch, G.J. Moro, J. Chem. Phys. 133, 034509 (2010)

    Article  ADS  Google Scholar 

  16. B. Fresch, G.J. Moro, J. Chem. Phys. 133, 034510 (2010)

    Article  ADS  Google Scholar 

  17. F.B.G. Gallavotti, G. Gentile, Aspects of the Ergodic, Qualitative and Statistical Theory of Motion (Springer-Verlag, Berlin, 2004)

  18. B. Fresch, G.J. Moro, J. Chem. Phys. 134, 054510 (2011)

    Article  ADS  Google Scholar 

  19. M.M.J. Gemmer, G. Mahler, Quantum thermodynamics emergence of thermodynamic Behavior Within Composite Quantum Systems (Springer, New York, 2004)

  20. C. Bartsch, J. Gemmer, Phys. Rev. Lett. 102, 110403 (2009)

    Article  ADS  Google Scholar 

  21. S. Mukamel, Principles of Nonlinear Optics and Spectroscopy (Oxford University Press, New York, 1995)

  22. R.V. Jensen, R. Shankar, Phys. Rev. Lett. 54, 1879 (1985)

    Article  ADS  Google Scholar 

  23. P. Borowski, J. Gemmer, G. Mahler, Eur. Phys. J. B 35, 255 (2003)

    Article  ADS  Google Scholar 

  24. S. Yuan, M.I. Katsnelson, H. De Raedt, J. Phys. Soc. Jpn 78, 094003 (2009)

    Article  ADS  Google Scholar 

  25. F.G.S.L. Brandão, P. Ćwikliński, M. Horodecki, P. Horodecki, J.K. Korbicz, M. Mozrzymas, Phys. Rev. E 86, 031101 (2012)

    Article  ADS  Google Scholar 

  26. Q. Xu, G. Sadiek, S. Kais, Phys. Rev. A 83, 062312 (2011)

    Article  ADS  Google Scholar 

  27. T. Monnai, Phys. Rev. E 84, 011126 (2011)

    Article  ADS  Google Scholar 

  28. A. Peres, Phys. Rev. Lett. 49, 1118 (1982)

    Article  ADS  Google Scholar 

  29. D.G. Cory, A.F. Fahmy, T.F. Havel, Proc. Natl. Acad. Sci. 94, 1634 (1997)

    Article  ADS  Google Scholar 

  30. N.A. Gershenfeld, I.L. Chuang, Science 275, 350 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Knill, R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  32. H. De Raedt, K. Michielsen, Comput. Methods Simul. Quantum Comput., in Handbook of Theoretical and Computational Nanotechnology, edited by M. Rieth, W. Schommers (American Scientific Publishers, Los Angeles, 2006), p. 2

  33. W. Zhang, N. Konstantinidis, K.A. Al-Hassanieh, V.V. Dobrovitski, J. Phys.: Condens. Matter 19, 083202 (2007)

    Article  ADS  Google Scholar 

  34. J. Schliemann, A.V. Khaetskii, D. Loss, Phys. Rev. B 66, 245303 (2002)

    Article  ADS  Google Scholar 

  35. G.A. Álvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, Phys. Rev. Lett. 101, 120503 (2008)

    Article  MathSciNet  Google Scholar 

  36. N. Van Kampen, Phys. Norv. 5, 279 (1971)

    Google Scholar 

  37. V.M. Kenkre, Phys. Rev. A 4, 2327 (1971)

    Article  ADS  Google Scholar 

  38. V.M. Kenkre, M. Dresden, Phys. Rev. Lett. 27, 9 (1971)

    Article  ADS  Google Scholar 

  39. V.M. Kenkre, M. Dresden, Phys. Rev. A 6, 769 (1972)

    Article  ADS  Google Scholar 

  40. W.M. Visscher, Phys. Rev. A 10, 2461 (1974)

    Article  ADS  Google Scholar 

  41. G. Jacucci, Physica A 118, 157 (1983)

    Article  ADS  Google Scholar 

  42. J.H. Weare, I. Oppenheim, Physica 72, 1 (1974)

    Article  ADS  Google Scholar 

  43. I. Procaccia, D. Ronis, M.A. Collins, J. Ross, I. Oppenheim, Phys. Rev. A 19, 1290 (1979)

    Article  ADS  Google Scholar 

  44. A.K. Rajagopal, S. Teitler, Phys. Rev. A 43, 2059 (1991)

    Article  ADS  Google Scholar 

  45. M.O. Cáceres, S.A. Grigera, Physica A 291, 317 (2001)

    Article  ADS  MATH  Google Scholar 

  46. M. Falcioni, A. Vulpiani, Physica A 215, 481 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  47. M. Bianucci, R. Mannella, B.J. West, P. Grigolini, Phys. Rev. E 50, 2630 (1994)

    Article  ADS  Google Scholar 

  48. G.P. Morriss, D.J. Evans, E.G.D. Cohen, H. van Beijeren, Phys. Rev. Lett. 62, 1579 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  49. R. Kubo, Rep. Prog. Phys. 29, 255 (1966)

    Article  ADS  Google Scholar 

  50. C.M. Van Vliet, J. Stat. Phys. 53, 49 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  51. K.M. van Vliet, J. Math. Phys. 19, 1345 (1978)

    Article  ADS  Google Scholar 

  52. K.M. van Vliet, J. Math. Phys. 20, 2573 (1979)

    Article  ADS  Google Scholar 

  53. M.V.S. Bonança, Phys. Rev. E 78, 031107 (2008)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio J. Moro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fresch, B., Moro, G. Typical response of quantum pure states. Eur. Phys. J. B 86, 233 (2013). https://doi.org/10.1140/epjb/e2013-40023-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40023-6

Keywords

Navigation