Skip to main content
Log in

Solitary waves of α-helix propagation in media with arbitrary inhomogeneities

The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the dynamics of solitary waves in α-helical proteins going beyond the standard nearest-neighbour interaction by taking into account influence long-range dipole-dipole interactions of the Kac-Baker type. By means of the coherent state representation of operators, the model Hamiltonian is transformed into a pair of classical lattice equations, which is further reduced to a sole nonlinear Schrödinger (NLS) equation using the continuum approximation of which the dispersive coefficient depends on the long-range interactions (LRI) parameter. It comes out from our results that the bright-like solitons, solitary waves which govern the energy transfer in α-helix, are deeply influenced by the LRI. At the end, we transform the NLS equation for more currently-important inhomogeneous NLS models in media with inhomogeneities. Application of this transformation to two example models is illustrated and soliton-like solutions are also graphically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.S. Davydov, J. Theor. Biol. 38, 559 (1973)

    Article  Google Scholar 

  2. M. Daniel, K. Deepamala, Physica A 231, 241 (1995)

    Article  ADS  Google Scholar 

  3. M. Daniel, M.M. Latha, Physica A 240, 526 (1997)

    Article  ADS  Google Scholar 

  4. K. Kundu, Phys. Rev. E 61, 5839 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  5. A.C. Scott, Phys. Scr. 29, 279 (1984)

    Article  ADS  Google Scholar 

  6. M. Daniel, M.M. Latha, Phys. Lett. A 252, 92 (1999)

    Article  ADS  Google Scholar 

  7. N.A. Nevskaya, Yu.N. Chirgadze, Biopolymers 15, 637 (1976)

    Article  Google Scholar 

  8. M. Daniel, M.M. Latha, Physica A 298, 351 (2001)

    Article  ADS  MATH  Google Scholar 

  9. M.M. Latha, G. Merlin, Phys. Lett. A 376, 938 (2012)

    Article  ADS  MATH  Google Scholar 

  10. E. Simo, T.C. Kofane, Phys. Rev. E 56, 4751 (1997)

    Article  ADS  Google Scholar 

  11. E. Simo, T.C. Kofane, Phys. Scr. 49, 543 (1994)

    Article  ADS  Google Scholar 

  12. E. Simo, T.C. Kofane, Phys. Rev. E 54, 2071 (1996)

    Article  ADS  Google Scholar 

  13. H.P. Ekobena et al., J. Phys.: Condens. Matter 23, 375104 (2011)

    Article  Google Scholar 

  14. X.F. Pang, Phys. Rev. B 19, 6989 (2001)

    Google Scholar 

  15. S. Takeno, Prog. Theor. Phys. 71, 395 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Takeno, Prog. Theor. Phys. 73, 853 (1985)

    Article  ADS  Google Scholar 

  17. S. Takeno, Prog. Theor. Phys. 75, 1 (1986)

    Article  ADS  Google Scholar 

  18. G.A. Baker, Phys. Rev. 122, 1477 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Kac, E. Helfand, J. Math. Phys. 4, 1078 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. D. Grecu, A. Visinescu, Proc. Inst. Math. of NAS of Ukraine 50, 1502 (2004)

    Google Scholar 

  21. O.M. Braun et al., Phys. Rev. B 41, 7118 (1990)

    Article  ADS  Google Scholar 

  22. P. Woafo et al., J. Phys.: Condens. Matter 5, L123 (1993)

    Article  ADS  Google Scholar 

  23. L. Vazquez et al., Phys. Lett. A 189, 45 (1994)

    Article  Google Scholar 

  24. G.L. Alfimov et al., Chaos 3, 405 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Yu. B. Gaididei et al., Phys. Lett. A 222, 152 (1996)

    Article  ADS  Google Scholar 

  26. Yu. B. Gaididei et al., Phys. Scr. T67, 151 (1996)

    Article  ADS  Google Scholar 

  27. Yu. B. Gaididei et al., Phys. Rev. Lett. 75, 2240 (1995)

    Article  ADS  Google Scholar 

  28. Yu. B. Gaididei et al., Phys. Rev. E 55, 6141 (1997)

    Article  ADS  Google Scholar 

  29. S.F. Mingaleev et al., J. Biol. Phys. 25, 41 (1999)

    Article  Google Scholar 

  30. C. Brunhuber et al., Phys. Rev. E 73, 016614 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  31. J. Chen, N.S. Chaudhari, Soft Comput. J. 10, 315 (2005)

    Article  Google Scholar 

  32. K. Nagano, J. Mol. Biol. 84, 337 (1974)

    Article  Google Scholar 

  33. S.K. Sarker, J.A. Krumhansl, Phys. Rev. B 23, 2374 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  34. R.B. Griffiths, Phase Transitions and Critical Phenomena, edited by C. Domb, M.S. Green (Academic Press, London, 1972), Vol. 1

  35. V.E. Zakharov, A.B. Shabat, Zh. Eksp. Theor. Fiz. 61, 118 (1971)

    Google Scholar 

  36. V.E. Zakharov, A.B. Shabat, Sov. Phys. J. Exp. Theor. Phys. 34, 62 (1972)

    MathSciNet  ADS  Google Scholar 

  37. J. Herrera et al., Physica D 191, 1567 (2004)

    Article  MathSciNet  Google Scholar 

  38. M.R. Gupta, B.Q. Som, B. Dasgupta, Phys. Lett. 69A, 172 (1978)

    MathSciNet  ADS  Google Scholar 

  39. H.H. Chen, C.S. Liu, Phys. Fluids 21, 377 (1978)

    Article  ADS  MATH  Google Scholar 

  40. A.S. Davydov, Solitons in molecular systems, 2nd edn. (Kluwer Academic Publishers Group, Dordrecht, 1991)

  41. H.H. Chen, C.S. Liu, Phys. Rev. Lett. 37, 693 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  42. H.M. Li, F.M. Wu, Chin. Phys. Lett. 21, 1425 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Mvogo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mvogo, A., Ben-Bolie, G.H. & Kofané, T.C. Solitary waves of α-helix propagation in media with arbitrary inhomogeneities. Eur. Phys. J. B 86, 217 (2013). https://doi.org/10.1140/epjb/e2013-31120-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-31120-7

Keywords

Navigation