Skip to main content
Log in

Relaxation dynamics in type-II superconductors with point-like and correlated disorder

The European Physical Journal B Aims and scope Submit manuscript

Abstract

We employ an elastic line model to investigate the steady-state properties and non-equilibrium relaxation kinetics of magnetic vortex lines in disordered type-II superconductors using Langevin molecular dynamics (LMD). We extract the dependence of the mean vortex line velocity and gyration radius as well as the mean-square displacement in the steady state on the driving current, and measure the vortex density and height autocorrelations in the aging regime. We study samples with either randomly distributed point-like or columnar attractive pinning centers, which allows us to distinguish the complex relaxation features of interacting flux lines subject to extended vs. uncorrelated disorder. Additionally, we find that our new LMD findings match earlier Monte Carlo (MC) simulation data well, verifying that these two microscopically quite distinct simulation methods lead to macroscopically very similar results for non-equilibrium vortex matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.R. Nelson, Phys. Rev. Lett. 60, 1973 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  2. D.R. Nelson, H.S. Seung, Phys. Rev. B 39, 9153 (1989)

    Article  ADS  Google Scholar 

  3. D.R. Nelson, J. Stat. Phys. 57, 511 (1989)

    Article  ADS  Google Scholar 

  4. M.P.A. Fisher, Phys. Rev. Lett. 62, 1415 (1989)

    Article  ADS  Google Scholar 

  5. D.S. Fisher, M.P.A. Fisher, D.A. Huse, Phys. Rev. B 43, 130 (1991)

    Article  ADS  Google Scholar 

  6. M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Phys. Rev. Lett. 63, 2303 (1989)

    Article  ADS  Google Scholar 

  7. T. Nattermann, Phys. Rev. Lett. 64, 2454 (1990)

    Article  ADS  Google Scholar 

  8. G. Blatter, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994)

    Article  ADS  Google Scholar 

  9. S.S. Banerjee, A.K. Grover, M.J. Higgins, G.I. Menon, P.K. Mishra, D. Pal, S. Ramakrishnan, T.V. Chandrasekhar Rao, G. Ravikumar, V.C. Sahni, S. Sarkar, C.V. Tomy, Physica C 355, 39 (2001)

    Article  ADS  Google Scholar 

  10. D.R. Nelson, V.M. Vinokur, Phys. Rev. Lett. 68, 2398 (1992)

    Article  ADS  Google Scholar 

  11. I.F. Lyuksyutov, Europhys. Lett. 20, 273 (1992)

    Article  ADS  Google Scholar 

  12. D.R. Nelson, V.M. Vinokur, Phys. Rev. B 48, 13060 (1993)

    Article  ADS  Google Scholar 

  13. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)

    Article  ADS  Google Scholar 

  14. U.C. Täuber, D.R. Nelson, Phys. Rep. 289, 157 (1997)

    Article  ADS  Google Scholar 

  15. L.C.E. Struik, Physical Aging in Amorphous Polymers and Other Materials (Elsevier, Amsterdam, 1978)

  16. Ageing and the Glass Transition, Lecture Notes in Physics, edited by M. Henkel, M. Pleimling, E. Sanctuary (Springer, Berlin, 2007), Vol. 716

  17. M. Henkel, M. Pleimling, Non-Equilibrium Phase Transitions: Ageing and Dynamical Scaling Far from Equilibrium (Springer, Berlin, 2010), Vol. 2

  18. L.F. Cugliandolo, in Slow Relaxation and Non Equilibrium Dynamics in Condensed Matter, edited by J.-L. Barrat, J. Dalibart, J. Kurchan, M.V. Feigel’man (Springer, Berlin, 2003)

  19. M. Henkel, M. Pleimling, in Rugged Free Energy Landscapes: Common Computational Approaches in Spin Glasses, Structural Glasses and Biological Macromolecules, Lecture Notes in Physics, edited by W. Janke (Springer, Berlin, 2008), Vol. 736, p. 107

  20. X. Du, G. Li, E.Y. Andrei, M. Greenblatt, P. Shuk, Nat. Phys. 3, 111 (2007)

    Article  Google Scholar 

  21. M. Nicodemi, H.J. Jensen, Phys. Rev. B 65, 144517 (2002)

    Article  ADS  Google Scholar 

  22. M. Nicodemi, H.J. Jensen, J. Phys. A 34, 8425 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. H.J. Jensen, M. Nicodemi, Europhys. Lett. 54, 566 (2001)

    Article  ADS  Google Scholar 

  24. M. Nicodemi, H.J. Jensen, Phys. Rev. Lett. 86, 4378 (2001)

    Article  ADS  Google Scholar 

  25. S. Bustingorry, L.F. Cugliandolo, D. Domínguez, Phys. Rev. Lett. 96, 027001 (2006)

    Article  ADS  Google Scholar 

  26. S. Bustingorry, L.F. Cugliandolo, D. Domínguez, Phys. Rev. B 75, 024506 (2007)

    Article  ADS  Google Scholar 

  27. L. Civale, A.D. Marwick, T.K. Worthington, M.A. Kirk, J.R. Thompson, L. Krusin-Elbaum, Y. Sun, J.R. Clem, F. Holtzberg, Phys. Rev. Lett. 67, 648 (1991)

    Article  ADS  Google Scholar 

  28. M. Pleimling, U.C. Täuber, Phys. Rev. B 84, 174509 (2011)

    Article  ADS  Google Scholar 

  29. J. Das, T.J. Bullard, U.C. Täuber, Physica A 318, 48 (2003)

    Article  ADS  Google Scholar 

  30. T.J. Bullard, J. Das, G.L. Daquila, U.C. Täuber, Eur. Phys. J. B 65, 469 (2008)

    Article  ADS  Google Scholar 

  31. A. Brass, H.J. Jensen, Phys. Rev. B 39, 9587 (1989)

    Article  ADS  Google Scholar 

  32. M.M. Abdelhadi, K.A. Ziq, Supercond. Sci. Tech. 7, 99 (1994)

    Article  ADS  Google Scholar 

  33. T. Klongcheongsan, T.J. Bullard, U.C. Täuber, Supercond. Sci. Tech. 23, 025023 (2010)

    Article  ADS  Google Scholar 

  34. V. Gotcheva, A.T.J. Wang, S. Teitel, Phys. Rev. Lett. 92, 247005 (2004)

    Article  ADS  Google Scholar 

  35. V. Gotcheva, Y. Wang, A.T.J. Wang, S. Teitel, Phys. Rev. B 72, 064505 (2005)

    Article  ADS  Google Scholar 

  36. M.-B. Luo, X. Hu, Phys. Rev. Lett. 98, 267002 (2007)

    Article  ADS  Google Scholar 

  37. D.S. Fisher, Phys. Rep. 301, 113 (1998)

    Article  ADS  Google Scholar 

  38. S.F. Edwards, D.R. Wilkinson, Proc. R. Soc. A 381, 17 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Röthlein, F. Baumann, M. Pleimling, Phys. Rev. E 76, 019901(E) (2007)

    Article  ADS  Google Scholar 

  40. S. Bustingorry, L.F. Cugliandolo, J.L. Iguain, J. Stat. Mech. Theor. Exp. 2007, P09008 (2007)

    Article  Google Scholar 

  41. Y.-L. Chou, M. Pleimling, J. Stat. Mech. Theor. Exp. 2010, P08007 (2010)

    Article  Google Scholar 

  42. Y.-L. Chou, M. Pleimling, R.K.P. Zia, Phys. Rev. E 80, 061602 (2009)

    Article  ADS  Google Scholar 

  43. T. Nattermann, S. Scheidl, Adv. Phys. 49, 607 (2000)

    Article  ADS  Google Scholar 

  44. M. Lässig, Phys. Rev. Lett. 80, 2366 (1998)

    Article  ADS  Google Scholar 

  45. J.L. Iguain, S. Bustingorry, A.B. Kolton, L.F. Cugliandolo, Phys. Rev. B 80, 094201 (2009)

    Article  ADS  Google Scholar 

  46. J.A. Izaguirre, D.P. Catarello, J.M. Wozniak, R.D. Skeel, J. Chem. Phys. 114, 2090 (2001)

    Article  ADS  Google Scholar 

  47. A. Brünger, C.L. Brooks, M. Karplus, Chem. Phys. Lett. 105, 495 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Dobramysl.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobramysl, U., Assi, H., Pleimling, M. et al. Relaxation dynamics in type-II superconductors with point-like and correlated disorder. Eur. Phys. J. B 86, 228 (2013). https://doi.org/10.1140/epjb/e2013-31101-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-31101-x

Keywords

Navigation