Skip to main content
Log in

Half-filled Kondo lattice on the honeycomb lattice

The European Physical Journal B Aims and scope Submit manuscript

Abstract

The unique linear density of state around the Dirac points for the honeycomb lattice brings much novel features in strongly correlated models. Here we study the ground-state phase diagram of the Kondo lattice model on the honeycomb lattice at half-filling by using an extended mean-field theory. By treating magnetic interaction and Kondo screening on an equal footing, it is found that besides a trivial discontinuous first-order quantum phase transition between well-defined Kondo insulator and antiferromagnetic insulating state, there can exist a wide coexistence region with both Kondo screening and antiferromagnetic orders in the intermediate coupling regime. In addition, the stability of Kondo insulator requires a minimum strength of the Kondo coupling. These features are attributed to the linear density of state, which are absent in the square lattice. Furthermore, fluctuation effect beyond the mean-field decoupling is analyzed and the corresponding antiferromagnetic spin-density-wave transition falls into the O(3) universal class. Comparatively, we also discuss the Kondo necklace and the Kane-Mele-Kondo (KMK) lattice models on the same lattice. Interestingly, it is found that the topological insulating state is unstable to the usual antiferromagnetic ordered states at half-filling for the KMK model. The present work may be helpful for further study on the interplay between conduction electrons and the densely localized spins on the honeycomb lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. S. Sachdev, Quantum Phase Transition, 2nd edn. (Cambridge University Press, Cambridge, 2011)

  2. H.V. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007)

    Article  ADS  Google Scholar 

  3. M. Vojta, J. Low Temp. Phys. 161, 203 (2010)

    Article  ADS  Google Scholar 

  4. J. Custers et al., Nature 424, 524 (2003)

    Article  ADS  Google Scholar 

  5. J. Custers, P. Gegenwart, C. Geibel, F. Steglich, P. Coleman, S. Paschen, Phys. Rev. Lett. 104, 186402 (2010)

    Article  ADS  Google Scholar 

  6. Y. Matsumoto et al., Science 331, 316 (2011)

    Article  ADS  Google Scholar 

  7. T. Senthil, S. Sachdev, M. Vojta, Phys. Rev. Lett. 90, 216403 (2003)

    Article  ADS  Google Scholar 

  8. T. Senthil, M. Vojta, S. Sachdev, Phys. Rev. B 69, 035111 (2004)

    Article  ADS  Google Scholar 

  9. C. Pépin, Phys. Rev. Lett. 94, 066402 (2005)

    Article  ADS  Google Scholar 

  10. K.S. Kim, C.L. Jia, Phys. Rev. Lett. 104, 156403 (2010)

    Article  ADS  Google Scholar 

  11. T. Grover, T. Senthil, Phys. Rev. B 81, 205102 (2010)

    Article  ADS  Google Scholar 

  12. Y. Zhong, K. Liu, Y.Q. Wang, H.-G. Luo, Phys. Rev. B 86, 115113 (2012)

    Article  ADS  Google Scholar 

  13. H. Tsunetsugu, M. Sigrist, K. Ueda, Rev. Mod. Phys. 69, 809 (1997)

    Article  ADS  Google Scholar 

  14. C. Lacroix, M. Cyrot, Phys. Rev. B 20, 1969 (1979)

    Article  ADS  Google Scholar 

  15. G.M. Zhang, L. Yu, Phys. Rev. B 62, 76 (2000)

    Article  ADS  Google Scholar 

  16. S. Capponi, F.F. Assaad, Phys. Rev. B 63, 155114 (2001)

    Article  ADS  Google Scholar 

  17. H. Watanabe, M. Ogata, Phys. Rev. Lett. 99, 136401 (2007)

    Article  ADS  Google Scholar 

  18. G.-B. Li, G.-M. Zhang, Phys. Rev. B 81, 094420 (2010)

    Article  ADS  Google Scholar 

  19. G.-M. Zhang, Y.-H. Su, Lu Yu, Phys. Rev. B 83, 033102 (2011)

    Article  ADS  Google Scholar 

  20. J. Custers, P. Gegenwart, C. Geibel, F. Steglich, P. Coleman, S. Paschen, Phys. Rev. Lett. 104, 186402 (2010)

    Article  ADS  Google Scholar 

  21. S. Doniach, Physica B 91, 231 (1977)

    Article  Google Scholar 

  22. P.A. Lee, N. Nagaosa, X.G. Wen, Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  23. S. Saremi, P.A. Lee, Phys. Rev. B 75, 165110 (2007)

    Article  ADS  Google Scholar 

  24. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  25. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H.C. Neto, Rev. Mod. Phys. 84, 1067 (2012)

    Article  ADS  Google Scholar 

  26. Z.Y. Meng, T.C. Lang, S. Wessel, F.F. Assaad, A. Muramatsu, Nature 464, 847 (2010)

    Article  ADS  Google Scholar 

  27. I.F. Herbut, Phys. Rev. Lett. 97, 146401 (2006)

    Article  ADS  Google Scholar 

  28. B.K. Clark, D.A. Abanin, S.L. Sondhi, Phys. Rev. Lett. 107, 087204 (2011)

    Article  ADS  Google Scholar 

  29. F. Mezzacapo, M. Boninsegni, Phys. Rev. B 85, 060402(R) (2012)

    Article  ADS  Google Scholar 

  30. Y. Zhong, K. Liu, Y.Q. Wang, H.-G. Luo, Phys. Rev. B 86, 165134 (2012)

    Article  ADS  Google Scholar 

  31. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  32. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  33. S. Rachel, K. Le Hur, Phys. Rev. B 82, 075106 (2010)

    Article  ADS  Google Scholar 

  34. M. Hohenadler, T.-C. Lang, F.F. Assaad, Phys. Rev. Lett. 106, 100403 (2011)

    Article  ADS  Google Scholar 

  35. A. Rüegg, G.A. Fiete, Phys. Rev. Lett. 108, 046401 (2012)

    Article  ADS  Google Scholar 

  36. X.-Y. Feng, J. Dai, C.-H. Chung, Qimiao Si, arXiv:cond- mat/1206.0979v1 (2012)

  37. S. Doniach, Phys. Rev. B 35, 1814 (1987)

    Article  ADS  Google Scholar 

  38. M.A. Continentino, Quantum Scaling in Many-Body Systems (World Scientific Press, Singapore, 2001)

  39. G.-M. Zhang, Q. Gu, L. Yu, Phys. Rev. B 62, 69 (2000)

    Article  ADS  Google Scholar 

  40. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  41. D. Withoff, E. Fradkin, Phys. Rev. Lett. 64, 1835 (1990)

    Article  ADS  Google Scholar 

  42. K. Ingersent, Phys. Rev. B 54, 11936 (1996)

    Article  ADS  Google Scholar 

  43. B. Uchoa, T.G. Rappoport, A.H.C. Neto, Phys. Rev. Lett. 106, 016801 (2011)

    Article  ADS  Google Scholar 

  44. J. Otsuki, H. Kusunose, Y. Kuramoto, Phys. Rev. Lett. 102, 017202 (2009)

    Article  ADS  Google Scholar 

  45. S. Hoshino, J. Otsuki, Y. Kuramoto, Phys. Rev. B 81, 113108 (2010)

    Article  ADS  Google Scholar 

  46. M. Bercx, F.F. Assaad, Phys. Rev. B 86, 075108 (2012)

    Article  ADS  Google Scholar 

  47. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  48. N. Goldman, A. Kubasiak, A. Bermudez, P. Gaspard, M. Lewenstein, M.A. Martin-Delgado, Phys. Rev. Lett. 103, 035301 (2009)

    Article  ADS  Google Scholar 

  49. A. Bermudez, N. Goldman, A. Kubasiak, M. Lewenstein, M.A. Martin-Delgado, New J. Phys. 12, 033041 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Y., Liu, K., Wang, YF. et al. Half-filled Kondo lattice on the honeycomb lattice. Eur. Phys. J. B 86, 195 (2013). https://doi.org/10.1140/epjb/e2013-31091-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-31091-7

Keywords

Navigation