Skip to main content
Log in

Molecular hydrogen and oxygen interactions with armchair Si nanotubes

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Molecular hydrogen and oxygen adsorptions on a (6, 6) armchair silicon nanotube have been studied by optimizing the distances of the admolecules from both inside and outside the tube. Full geometry and spin optimizations have been performed without any symmetry constraints with an all electron 3-21G* basis set and the B3LYP functional. The molecule is originally placed perpendicular or parallel to the tube axis. Hydrogen adsorption with the molecular axis aligned parallel to the surface of the nanotube is less favorable. Hydrogen molecule does not dissociate while oxygen molecule dissociates after optimization. The on-top site is the only preferred site for hydrogen molecule with an adsorption energy of 3.71 eV and an optimized distance of 3.31 for external adsorption whereas the on-top site is the most preferred site with adsorption energy of 3.69 eV for internal adsorption. For oxygen, the molecule dissociates and the most preferred sites are the two bridge sites with an adsorption energy of 9.64 eV, the optimized distance being 1.65/1.68 Å when it is adsorbed from the outside of the tube. When oxygen molecule is originally placed at on-top site it will hold as a molecule after adsorption with a slightly increased bond length. For the internal adsorption of oxygen, the molecules also dissociate in most cases and the zigzag bridge site is the most preferred site. After molecular adsorption for both hydrogen and oxygen, the buckling of the nanotubes increased. Frustration effects in the nanotube due to molecular adsorption are also noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tada, S. Furuya, K. Watanabe, Phys. Rev. B 63, 155405 (2001)

    Article  ADS  Google Scholar 

  2. W. An, X. Wu, J.L. Yang, X.C. Zeng, J. Phys. Chem. C 111, 14105 (2007)

    Article  Google Scholar 

  3. R.J. Baierle, S.B. Fagan, R. Mota, A.J.R. da Silva, A. Fazzio, Phys. Rev. B 64, 085413 (2001)

    Article  ADS  Google Scholar 

  4. Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Appl. Phys. Lett. 74, 2307 (1999)

    Article  ADS  Google Scholar 

  5. X. Zhang, D. Cao, J. Chen, J. Phys. Chem. B 107, 4942 (2003)

    Article  Google Scholar 

  6. S. Banerjee, S. Nigam, C.G.S. Pillai, C. Majumder, Int. J. Hydrogen Energy 37, 3733 (2012)

    Article  Google Scholar 

  7. The Department of Energy Hydrogen and Fuel Cells Program Plan, 2011, http://www.hydrogen.energy.gov/pdfs/program˙plan2011.pdf

  8. R. Ströbel, L. Jörissen, T. Schliermann, V. Trapp, W. Schütz, K. Bohmhammel, G. Wolf, J. Garche, J. Power Sources 84, 221 (1999)

    Article  Google Scholar 

  9. F.E. Pinkerton, B.G. Wicke, C.H. Olk, G.G. Tibbetts, G.P. Meisner, M.S. Meyer, J.F. Herbst, J. Phys. Chem. B 104, 9460 (2000)

    Article  Google Scholar 

  10. R. Yang, Carbon 38, 623 (2000)

    Article  Google Scholar 

  11. H.G. Schimmel, G.J. Kearley, M.G. Nijkamp, C.T. Visser, K.P. de Jong, F.M. Mulder, Chem. Eur. J. 9, 4764 (2003)

    Article  Google Scholar 

  12. A.C. Dillon, T. Gennett, J.L. Alleman, K.M. Jones, P.A. Parilla, M.J. Heben, in Proceedings of the 2000, DOE/NREL Hydrogen Program Review, 2000, http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/28890kkk.pdf

  13. F. Darkrim, D. Levesque, J. Chem. Phys. 109, 4981 (1998)

    Article  ADS  Google Scholar 

  14. S.M. Lee, K.S. Park, Y.C. Choi, Y.S. Park, J.M. Bok, D.J. Bae, K.S. Nahm, Y.G. Choi, S.C. Yu, N. Kim, T. Frauenheim, Y.H. Lee, Synth. Met. 113, 209 (2000)

    Article  Google Scholar 

  15. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386, 377 (1997)

    Article  ADS  Google Scholar 

  16. S. Mukherjee, A.K. Ray, J. Comput. Theor. Nanosci. 5, 1210 (2008)

    Article  Google Scholar 

  17. P. Pradhan, A.K. Ray, J. Comput. Theor. Nanosci. 3, 128 (2006)

    Google Scholar 

  18. S.B. Fagan, R.J. Baierle, R. Mota, A.J.R. da Silva, A. Fazzio, Phys. Rev. B 61, 9994 (2000)

    Article  ADS  Google Scholar 

  19. M. Menon, E. Richter, Phys. Rev. Lett. 83, 792 (1999)

    Article  ADS  Google Scholar 

  20. B. Marsen, K. Sattler, Phys. Rev. B 60, 11593 (1999)

    Article  ADS  Google Scholar 

  21. U. Landman, R.N. Barnett, A.G. Scherbakov, Ph. Avouris, Phys. Rev. Lett. 85, 1958 (2000)

    Article  ADS  Google Scholar 

  22. R.Q. Zhang, S.T. Lee, C.K. Law, W.K. Li, B.K. Teo, Chem. Phys. Lett. 364, 251 (2002)

    Article  ADS  Google Scholar 

  23. R.Q. Zhang, H. Lee, W.K. Li, B.K. Teo, J. Phys. Chem. B 109, 8605 (2005)

    Article  Google Scholar 

  24. H. Chen, K. Adhikari A.K. Ray, J. Comput. Theor. Nanosci. 9, 495 (2012)

    Article  Google Scholar 

  25. P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science 287, 1801 (2000)

    Article  ADS  Google Scholar 

  26. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622 (2000)

    Article  ADS  Google Scholar 

  27. K. Bradley, S.H. Jhi, P.G. Collins, J. Hone, M.L. Cohen, S.G. Louie, A. Zettl, Phys. Rev. Lett. 85, 4361 (2000)

    Article  ADS  Google Scholar 

  28. M. Zhao, J.Z. Zhu, Y. Xia, M. Lu, J. Phys. Chem. C 111, 2942 (2007)

    Article  Google Scholar 

  29. W.J. Hehre, L. Radom, P. von R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986)

  30. D.C. Young, Computational Chemistry (Wiley, New York, 2001)

  31. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  32. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    MathSciNet  ADS  Google Scholar 

  33. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  34. J.C. Slater, The Self Consistent-Field for Molecules and Solids, Quantum Theory of Molecules and Solids (McGraw-Hill, New York, 1974), Vol. 4

  35. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

    Article  ADS  Google Scholar 

  36. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

  37. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)

    Article  ADS  Google Scholar 

  38. J.P. Perdew, M. Levy, Phys. Rev. Lett. 51, 1884 (1983)

    Article  ADS  Google Scholar 

  39. J. Muscat, A. Wander, N. Harrison, Chem. Phys. Lett. 34, 397 (2001)

    Article  Google Scholar 

  40. J. Heyd, G.E. Scuseria, J. Chem. Phys. 121, 1187 (2004)

    Article  ADS  Google Scholar 

  41. C.W. Bauschlicher, Chem. Phys. Lett. 246, 40 (1995)

    Article  ADS  Google Scholar 

  42. S. Tomic, B. Montanari, N.M. Harrison, Physica E 40, 2125 (2008)

    Article  ADS  Google Scholar 

  43. S. Tomic, N.M. Harrison, AIP Conf. Proc. 1199, 65 (2010)

    Article  ADS  Google Scholar 

  44. F.D. Proft, P. Geerlings, J. Chem. Phys. 106, 3270 (1997)

    Article  ADS  Google Scholar 

  45. M.W. Wong, Chem. Phys. Lett. 256, 391 (1996)

    Article  ADS  Google Scholar 

  46. K. Adhikari, A.K. Ray, J. Nanopart. Res. 14, 816 (2012)

    Article  Google Scholar 

  47. K. Adhikari, A.K. Ray, Solid State Commun. 151, 430 (2011)

    Article  ADS  Google Scholar 

  48. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  49. A.D. Becke, J. Chem. Phys. 109, 2092 (1998)

    Article  ADS  Google Scholar 

  50. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  51. M.J. Frisch et al., Gaussian 09, Revision A.1 (Gaussian, Inc., Wallingford CT, 2009)

  52. E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1 (Theoretical Chemistry Institute, University of Wisconsin, Madison, 1996)

  53. J. Sadoc, R. Mosseri, Geometrical Frustration (Cambridge University Press, Cambridge, 2006)

  54. E. Roduner, Nanoscopic Materials: Size-Dependent Phenomena (The Royal Society of Chemistry, Cambridge, 2006)

  55. C.S. Smith, Phys. Rev. 94, 42 (1954)

    Article  ADS  Google Scholar 

  56. K.Y. Kim, T.H. Shin, S.J. Han, H. Kang, Phys. Rev. Lett. 82, 1329 (1999)

    Article  ADS  Google Scholar 

  57. M. Needels, J.D. Joannopoulos, Y. Bar-Yam, S.T. Pantelides, Phys. Rev. B 43, 4208 (1991)

    Article  ADS  Google Scholar 

  58. E. Martinez, J. Plans, F. Yndurain, Phys. Rev. B 36, 8043 (1987)

    Article  ADS  Google Scholar 

  59. J. Plans, G. Diaz, E. Martinez, F. Yndurain, Phys. Rev. B 35, 788 (1987)

    Article  ADS  Google Scholar 

  60. T. Hoshino, Phys. Rev. B 59, 2332 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asok K. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Ray, A. Molecular hydrogen and oxygen interactions with armchair Si nanotubes. Eur. Phys. J. B 86, 293 (2013). https://doi.org/10.1140/epjb/e2013-31085-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-31085-5

Keywords

Navigation