Skip to main content
Log in

Complex-valued information entropy measure for networks with directed links (digraphs). Application to citations by community agents with opposite opinions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The notion of complex-valued information entropy measure is presented. It applies in particular to directed networks (digraphs). The corresponding statistical physics notions are outlined. The studied network, serving as a case study, in view of illustrating the discussion, concerns citations by agents belonging to two distinct communities which have markedly different opinions: the Neocreationist and Intelligent Design Proponents, on one hand, and the Darwinian Evolution Defenders, on the other hand. The whole, intra- and inter-community adjacency matrices, resulting from quotations of published work by the community agents, are elaborated and eigenvalues calculated. Since eigenvalues can be complex numbers, the information entropy may become also complex-valued. It is calculated for the illustrating case. The role of the imaginary part finiteness is discussed in particular and given some physical sense interpretation through local interaction range consideration. It is concluded that such generalizations are not only interesting and necessary for discussing directed networks, but also may give new insight into conceptual ideas about directed or other networks. Notes on extending the above to Tsallis entropy measure are found in an Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Procaccia, Nature 333, 498 (1988)

    Article  ADS  Google Scholar 

  2. N. Hatano, D.R. Nelson, Phys. Rev. Lett. 77, 570 (1996)

    Article  ADS  Google Scholar 

  3. R. Grobe, F. Haake, H.-J. Sommers, Phys. Rev. Lett. 61, 1899 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  4. Y.V. Fyodorov, B.A. Khoruzhenko, Phys. Rev. Lett. 83, 65 (1999)

    Article  ADS  Google Scholar 

  5. M.A. Stephanov, Phys. Rev. Lett. 76, 4472 (1996)

    Article  ADS  Google Scholar 

  6. P. Di Francesco, M. Gaudin, C. Itzykson, F. Lesage, Int. J. Mod. Phys. A 9, 4257 (1994)

    Article  ADS  MATH  Google Scholar 

  7. B. Jancovici, Mol. Phys. 42, 1251 (1984)

    Article  ADS  Google Scholar 

  8. P.J. Forrester, B. Jancovici, Int. J. Mod. Phys. A 11, 941 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M. Ausloos, J.B. Sousa, M.M. Amado, R.P. Pinto, Appl. Phys. Lett. 43, 927 (1983)

    Article  ADS  Google Scholar 

  10. M. Ausloos, in Non Linear Phenomena at Phase Transitions and Instabilities, edited by T. Riste (Plenum Press, New York, 1982), pp. 337–341

  11. H.E. Stanley, Phase Transitions and Critical Phenomena (Clarendon Press, London, 1971)

  12. M.E. Fisher, Rev. Mod. Phys. 70, 653 (1998)

    Article  ADS  MATH  Google Scholar 

  13. H.E. Stanley, Rev. Mod. Phys. 71, 358 (1999)

    Article  Google Scholar 

  14. C.J. Thompson, Mathematical Statistical Mechanics (Macmillan, London, 1971)

  15. E. Brezin, J.C. LeGuillou, J. Zinn-Justin, Phys. Rev. Lett. 32, 473 (1974)

    Article  ADS  Google Scholar 

  16. J.C. Anifrani, C. Le Floc’h, D. Sornette, B. Souillard, J. Phys. I 5, 631 (1995)

    Article  Google Scholar 

  17. D. Sornette, Phys. Rep. 297, 239 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  18. K. Huang, Statistical Mechanics (Wiley, New York, 1963)

  19. H. Theil, Econometrica 33, 67 (1965)

    Article  MathSciNet  Google Scholar 

  20. J. Miśkiewicz, Physica A 387, 6595 (2008)

    Article  ADS  Google Scholar 

  21. F.O. Redelico, A.N. Proto, Int. J. Bifurc. Chaos 20, 413 (2010)

    Article  Google Scholar 

  22. Q. Wang, Y. Shen, J.Q. Zhang, Physica D 200, 287 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. I.F. Wilde, Lecture Notes on Complex Analysis (Imperial College Press, London, 2006)

  24. K.W. Boyack, S. Milojević, K. Börner, S. Morris, in Models of Science Dynamics, Understanding Complex Systems, edited by A. Scharnhorst, K. Börner, P. van den Besselaar (Springer-Verlag, Berlin, Heidelberg, 2012), pp. 3–22

  25. Y. Li, H.D. Cao, Y. Tan, Complexity 17, 13 (2011)

    Article  Google Scholar 

  26. R. Sinatra, D. Condorelli, V. Latora, Phys. Rev. Lett. 105, 178702 (2010)

    Article  ADS  Google Scholar 

  27. V. Venkatasubramanian, S. Katare, P.R. Patkar, F.-P. Mu, Comput. Chem. Eng. 28, 1789 (2004)

    Article  Google Scholar 

  28. T. Araújo, R. Vilela Mendes, Complex Syst. 12, 357 (2000)

  29. L. Kullmann, J. Kertész, K. Kaski, Phys. Rev. E 64, 057105 (2001)

    Article  Google Scholar 

  30. L. Guo, Xu Cai, Int. J. Mod. Phys. C 19, 1909 (2008)

    Article  ADS  MATH  Google Scholar 

  31. S. Abe, N. Suzuki, Europhys. Lett. 65, 581 (2004)

    Article  ADS  Google Scholar 

  32. B. Tadić, Physica A 286, 509 (2001)

    Google Scholar 

  33. G. Mukherjee, S.S. Manna, Phys. Rev. E 71, 066108 (2005)

    Article  ADS  Google Scholar 

  34. L.A. Meyers, M.E.J. Newman, B. Pourbohloul, J. Theor. Biol. 240, 400 (2006)

    Article  MathSciNet  Google Scholar 

  35. E.A. Leicht, M.E.J. Newman, Phys. Rev. Lett. 100, 118703 (2008)

    Article  ADS  Google Scholar 

  36. A. Ramzanpour, V. Karimipour, Phys. Rev. E 66, 036128 (2002)

    Article  ADS  Google Scholar 

  37. A.D. Sánchez, J.M. López, M.A. Rodríguez, Phys. Rev. Lett. 88, 048701 (2002)

    Article  Google Scholar 

  38. F. Radicchi, S. Fortunato, A. Vespignani, in Models of Science Dynamics, Understanding Complex Systems, edited by A. Scharnhorst, K. Börner, P. van den Besselaar (Springer-Verlag, Berlin, Heidelberg, 2012), pp. 233–257

  39. M. Szell, R. Lambiotte, S. Thurner, Proc. Natl. Acad. Sci. 107, 13636 (2010)

    Article  ADS  Google Scholar 

  40. A. Garcia Cantù Ross, M. Ausloos, Scientometrics 80, 457 (2009)

    Article  Google Scholar 

  41. G. Rotundo, M. Ausloos, Physica A 389, 5479 (2010)

    Article  ADS  Google Scholar 

  42. A. Bermann, N. Shaked-Monderer, Nonnegative Matrices and Digraphs, Encyclopedia of Complexity and System Science (Springer, 2008)

  43. O. Perron, Math. Ann. 64, 248 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Frobenius, S.-B. Prüss, Akad. Wiss. Berlin 456 (1912)

  45. R.A. Brualdi, http://www.math.niu.edu/˜sokolov/la-talks/braudi.pdf

  46. R.B. Bapat, T.E.S. Raghavan, Nonnegative Matrices and Applications, Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 1997), Vol. 64

  47. A. Berman, M. Neumann, R.J. Stern, Nonnegative Matrices in Dynamic Systems (Wiley-Interscience, New York, 1989)

  48. A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics (SIAM, Philadelphia, 1994)

  49. H. Minc, Nonnegative Matrices (Wiley, New York, 1988)

  50. U. Rothblum, Nonnegative Matrices and Stochastic Matrices, in Handbook of Linear Algebra, edited by L. Hogben (CRC Press, 2006)

  51. E. Senata, Nonnegative Matrices and Markov Chains, Springer Series in Statistics (Springer-Verlag, Berlin, 1981)

  52. C. Meyer, Matrix Analysis and Applied Linear Algebra (2000), Chap. 8.3, p. 670, http://www.matrixanalysis.com/Chapter8.pdf

  53. F.R. Gantmacher, The Theory of Matrices, K.A. Hirsch, transl. 2000 (AMA Chelsea Publ., 2000), Chap. XIII.3, p. 66

  54. R.E. Tarjan, SIAM J. Comput. 1, 146 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  55. B. Karrer, M.E.J. Newman, Phys. Rev. E 80, 046110 (2009)

    Article  ADS  Google Scholar 

  56. W. Zweger, J. Phys. A 18, 2079 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  57. J.S. Langer, Ann. Phys. 54, 258 (1969)

    Article  ADS  Google Scholar 

  58. W. Cook, C. Mounfield, P. Ormerod, L. Smith, Eur. Phys. J. B 27, 189 (2002)

    ADS  Google Scholar 

  59. G. Livan, L. Rebecchi, Eur. Phys. J. B 85, 213 (2012)

    Article  ADS  Google Scholar 

  60. S. Droźdź, J. Kwapień, A.Z. Gorski, P. Oswieçimka, Acta Phys. Pol. B 37, 3039 (2006)

    ADS  Google Scholar 

  61. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998)

    Article  Google Scholar 

  63. C. Tsallis, Braz. J. Phys. 29, 1 (1999)

    Article  ADS  Google Scholar 

  64. G. Wilk, Z. Wlodarczyk, Acta Phys. Pol. B 35, 871 (2004)

    ADS  Google Scholar 

  65. M. Ausloos, J. Miśkiewicz, Braz. J. Phys. 39, 388 (2009)

    ADS  Google Scholar 

  66. J.R. Iglesias, R.M.C. de Almeida, Eur. Phys. J. B 85, 85 (2012)

    Article  ADS  Google Scholar 

  67. J. Moody, Social Netw. 20, 291 (1998)

    Article  Google Scholar 

  68. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Science 298, 824 (2002)

    Article  ADS  Google Scholar 

  69. R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, U. Alon, Science 303, 1538 (2004)

    Article  ADS  Google Scholar 

  70. V. Batagelj, A. Mrvar, Pajek, Program for Analysis and Visualization of Large Networks Reference Manual, Fig. 15, p. 52

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Rotundo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotundo, G., Ausloos, M. Complex-valued information entropy measure for networks with directed links (digraphs). Application to citations by community agents with opposite opinions. Eur. Phys. J. B 86, 169 (2013). https://doi.org/10.1140/epjb/e2013-30985-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30985-6

Keywords

Navigation