Skip to main content
Log in

A comparison of electronic transport properties of graphene with hexagonal boron nitride substrate and graphane, a first principle study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, a first-principle investigation of the electronic properties of graphene on hexagonal boron nitride substrate, and of one-sided and two-sided fully saturated hydrocarbons with C-H formula derived from a single sheet of graphene, tablelike and chairlike graphane, are presented within density functional theory (DFT). We obtain the most stable orientation of graphene on the substrate, the adsorption energy, the charge transfer and density of states (DOS) for these systems. We discuss the changes in the density of states as well as the extent of charge transfer, band gap and finally quantum conductivity and current for graphene due to the presence of the substrate and H atoms. We show that the band gap of 64 meV induced by the BN substrate can greatly improve the electrical characteristics of graphene-based field effect transistors (FETs) and its on/off ratio and decreases the minimum conductance by a factor three. We identify that the substrate is acting as a donor for graphene layer and graphene is acting as an acceptor with respect to H atoms after saturation with hydrogen. We show that graphene on h-BN substrate has higher on/off ratio respect to pristine graphene and higher conductance respect to tablelike graphane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. K. Tahy, T. Fang, P. Zhao, A. Konar, C. Lian, H. (Grace) Xing, M. Kelly, D. Jena, Graphene Transistors, Physics and Applications of Graphene-Experiments, edited by Dr. Sergey Mikhailov, (2011) ISBN: 978-953-307-217-3, http://www.intechopen.com/books/physics-and-applications-of-grapheneexperiments/graphene-transistors

  2. B. Standley, W. Bao, H. Zhang, J. Bruck, C. Ning Lau, M. Bockrath, Nano Lett. 8, 3345 (2008)

    Article  ADS  Google Scholar 

  3. Y. Ren, S. Chen, W. Cai, Y. Zhu, C. Zhu, R.S. Ruoff, Appl. Phys. Lett. 97, 053107 (2010)

    Article  ADS  Google Scholar 

  4. K. Yoo, E.K. Seo, S.J. Kim, W. Kim, M.G. Park, H. Yu, C. Hwang, Curr. Appl. Phys. 12, 115 (2012)

    Article  ADS  Google Scholar 

  5. A.Z. Alzahrani, G.P. Srivastava, Appl. Surf. Sci. 256, 5783 (2010)

    Article  ADS  Google Scholar 

  6. J.O. Sofo, A.S. Chaudhari, G.D. Barber, Phys. Rev. B 75, 153401 (2007)

    Article  ADS  Google Scholar 

  7. G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Phys. Rev. B 76, 073103 (2007)

    Article  ADS  Google Scholar 

  8. S. Das Sarma, E.H. Hwang, Phys. Rev. B 83, 121405(R) (2011)

    ADS  Google Scholar 

  9. K.S. Novoselov, A.K. Geim, S.V. Morozov, D.H. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  10. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009), http://www.Pwscf.org

    Article  URL  Google Scholar 

  11. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  12. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  13. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  14. D.W. Boukhvalov, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 77, 035427 (2008)

    Article  ADS  Google Scholar 

  15. K. Xue, Z. Xu, Appl. Phys. Lett. 96, 063103 (2010)

    Article  ADS  Google Scholar 

  16. P.O. Löwdin, J. Chem. Phys. 18, 365 (1950)

    Article  ADS  Google Scholar 

  17. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610 (2009)

    Article  ADS  Google Scholar 

  18. A. Ferretti, B. Bonferroni, A. Calzolari, M. Buongiorno Nardelli, http://www.wannier-transport.org

  19. D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6851 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  20. B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, W. Duan, arXiv:0803.1516v1 [cond-mat.mtrl-sci] (2008)

  21. C.R. Dean, A.F. Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, K.L. Shepard, arxiv.org/abs/1010.1179v1 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoureh Pashangpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pashangpour, M., Bagheri, Z. & Ghaffari, V. A comparison of electronic transport properties of graphene with hexagonal boron nitride substrate and graphane, a first principle study. Eur. Phys. J. B 86, 269 (2013). https://doi.org/10.1140/epjb/e2013-30958-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30958-9

Keywords

Navigation