Skip to main content
Log in

Homogeneous broadening and k-vector conservation in direct bandgap transitions

Non-Lorentzian homogeneous line shapes for exponential decays under relaxation time approximation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

k-vector conservation is studied in direct bandgap optical transitions by examining edge emitted photoluminescent and electroluminescent spectra. Inhomogeneously and homogeneously broadened spectra are identified in tensile strained, single quantum well, broad stripe laser diode structures. In low excitation conditions, the molecular beam epitaxy (MBE) deposited test structures showed Urbach-tail like inhomogeneous broadening with small Urbach parameter values, typical for high quality materials. At high excitation conditions, significant deviations from Lorentzian line shape were observed and concluded to arise from k-vector conservation within the line broadening process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F.K. Reinhart, J. Appl. Phys. 97, 123534 (2005)

    Article  ADS  Google Scholar 

  2. A.I. Kucharska, D.J. Robbins, IEEE J. Quant. Electron. 26, 443 (1990)

    Article  ADS  Google Scholar 

  3. D. Ahn, IEEE J. Quant. Electron. 34, 344 (1998)

    Article  ADS  Google Scholar 

  4. P.G. Eliseev, Electron. Lett. 33, 2046 (1997)

    Article  Google Scholar 

  5. S. John, C. Soukoulis, M. Cohen, E. Economou, Phys. Rev. Lett. 57, 1777 (1986)

    Article  ADS  Google Scholar 

  6. S.R. Johnson, T. Tiedje, J. Appl. Phys. 78, 5609 (1995)

    Article  ADS  Google Scholar 

  7. M. Beaudoin, A.J.G. DeVries, S.R. Johnson, H. Laman, T. Tiedje, Appl. Phys. Lett 70, 3540 (1997)

    Article  ADS  Google Scholar 

  8. V. Weisskopf, E. Wigner, Z. Phys. 63, 54 (1930)

    Article  ADS  MATH  Google Scholar 

  9. L.A. Coldren, S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons Inc., New York, 1995) p.131 for broadening without wave vector conservation constraint, p.142 for spontaneous spectrum, p. 520 for transition matrix element

  10. E.Y. Lin, T.S. Lay, T.Y. Chang, in Proceedings of the 19th International Conference on Indiumphosphide and Related Materials, IPRM Matsue 2007, Matsue, 2007, PA3, p. 99

  11. J. Christen, D. Bimberg, Phys. Rev. B. 42, 7213 (1990)

    Article  ADS  Google Scholar 

  12. R.J. Elliot, Phys. Rev. 108, 1384 (1957)

    Article  ADS  Google Scholar 

  13. O. Madelung, Introduction to Solid-State Theory (Springer-Verlag, Heidelberg, 1996), p.280

  14. M. Shinada, S. Sugano, J. Phys. Soc. Jpn 21, 1936 (1966)

    Article  ADS  Google Scholar 

  15. S-L. Chuang, S. Schmitt-Rink, D.A.B. Miller, D.S. Chemla, Phys. Rev. B 43, 1500 (1991)

    Article  ADS  Google Scholar 

  16. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific Publishing Co. Pte. Ltd, London, 2004), p.188

  17. S.L. Chuang, Physics of Photonics Devices (John Wiley and Son Inc., Hoboken, 2009), p.680

  18. E.S. Koteles, J. Appl. Phys. 73, 8481 (1993)

    Article  ADS  Google Scholar 

  19. D.C. Bertolet, J.-K. Hsu, K.M. Lau, Appl. Phys. Lett. 53, 2501 (1988)

    Article  ADS  Google Scholar 

  20. E.S. Koteles, D.A. Owens, Surf. Sci. 228, 312 (1990)

    Article  ADS  Google Scholar 

  21. X. Zhang, K. Onabe, Y. Nitta, B. Zhang, S. Fukatsu, Y. Shiraki, R. Ito, Jpn J. Appl. Phys. 30, L1631 (1991)

    Article  ADS  Google Scholar 

  22. F. Agahi, K.M. Lau, Y. Nitta, H.K. Choi, A. Baliga, N.G. Anderson, IEEE Photon. Techn. Lett. 7, 140 (1995)

    Article  ADS  Google Scholar 

  23. E.S. Koteles, J.Y. Chi, Phys. Rev. B 37, 6332 (1988)

    Article  ADS  Google Scholar 

  24. L.C. Andreani, A. Pasquarello, Phys. Rev. B 42, 8928 (1990)

    Article  ADS  Google Scholar 

  25. S-H. Wei, A. Zunger, Phys. Rev. Lett. 76, 664 (1996)

    Article  ADS  Google Scholar 

  26. T. Takizawa, J. Phys. Soc. Jpn 52, 1057 (1983)

    Article  ADS  Google Scholar 

  27. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  Google Scholar 

  28. C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989)

    Article  ADS  Google Scholar 

  29. M.A. Rao, E.J. Caine, H. Kroemer, S.I. Long, D.I. Babic, J. Appl. Phys. 61, 643 (1987)

    Article  ADS  Google Scholar 

  30. X.H. Zhang, S.J. Chua, S.J. Xu, W.J. Fan, J. Phys.: Condens. Matter 710, 577 (1998)

    Article  ADS  Google Scholar 

  31. Y. Dong, R.M. Feenstra, M.P. Semtsiv, W.T. Masselink, Appl. Phys. Lett. 84, 227 (2004)

    Article  ADS  Google Scholar 

  32. T. Kakumu, F. Ishikawa, S. Kasai, T. Hashizume, H. Hasegawa, Jpn J. Appl. Phys. 742, 2230 (2003)

    Article  ADS  Google Scholar 

  33. J.J. O’Shea, C.M. Reaves, S.P. DenBaars, M.A. Chin, V. Narayanamurti, Appl. Phys. Lett. 69, 3022 (1996)

    Article  ADS  Google Scholar 

  34. T. Suzuki, A. Gomyo, S. Iijima, K. Kobayashi, S. Kawata, I. Hino, T. Yuasa, Jpn J. Appl. Phys. 27, 2098 (1988)

    Article  ADS  Google Scholar 

  35. S. Froyen, A. Zunger, A. Mascarenhas, Appl. Phys. Lett. 68, 2852 (1996)

    Article  ADS  Google Scholar 

  36. D. Biswas, N. Debbar, P. Bhattacharya, M. Razeghi, M. Defour, F. Omnes, Appl. Phys. Lett. 56, 833 (1990)

    Article  ADS  Google Scholar 

  37. M.J. Hafish, J.H. Quigley, R.E. Owens, G.Y. Robinson, Du Li, N. Otsuka, Appl. Phys. Lett. 54, 2688 (1989)

    ADS  Google Scholar 

  38. H. Kawai, K. Kaneko, N. Watanabe, J. Appl. Phys. 56, 463 (1984)

    Article  ADS  Google Scholar 

  39. AlGaAs material data taken from: http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs/index.html

  40. A. Knauer, F. Bugge, G. Erbert, H. Wenzel, K. Vogel, U. Zeimer, M. Weyers, J. Electron. Mater. 729, 53 (2000)

    Article  ADS  Google Scholar 

  41. G. Erbert, F. Bugge, A. Knauer, J. Sebastian, A. Thies, H. Wenzel, M. Weyers, G. Trankle, IEEE J. Sel. Top. in Quant. electron. 5, 780 (1999)

    Article  Google Scholar 

  42. K. Uppal, A. Mathur, P.D. Dapkus, IEEE Photon. Tech. Lett. 7, 1128 (1995)

    Article  ADS  Google Scholar 

  43. H. Wenzel, G. Erbert, F. Bugge, A. Knauer, J. Maege, J. Sebastian, R. Staske, K. Vogel, G. Trankle, Proc. SPIE, 3947, 32 (2000)

    Article  ADS  Google Scholar 

  44. G. Zhang, J. Nappi, H. Asonen, M. Pessa, IEEE Photon. Tech. Lett. 6, 1 (1994)

    Article  ADS  Google Scholar 

  45. G.M. Lewis, P.M. Snowton, J.D. Thomson, H.D. Summers, P. Blood, Appl. Phys. Lett. 80, 1 (2002)

    Article  ADS  Google Scholar 

  46. OLED scripting tool in Essential McLeod, Thin Film Center Inc., 2745 E Via Rotonda, Tucson AZ, 85716-5227 USA

  47. M.C. DeLong, D.J. Mowbray, R.A. Hogg, M.S. Skolnik, J.E. Williams, K. Meehan, R.P. Schneider, M.C. Wu, M. Hopkinson, Appl. Phys. Lett 66, 3185 (1995)

    Article  ADS  Google Scholar 

  48. Y. Dong, R.M. Feenstra, M.P. Semtsiv, W.T. Masselink, J. Appl. Phys. 103, 073704 (2008)

    Article  ADS  Google Scholar 

  49. E. Kuphal, A. Pocker, Jpn J. Appl. Phys. 37, 632 (1998)

    Article  ADS  Google Scholar 

  50. J.P. Loehr, J. Singh, Phys. Rev. B. 742, 7154 (1990)

    Article  ADS  Google Scholar 

  51. L. Li, P. Li, Y. Wen, J. Wen, Y. Zhu, Appl. Phys. Lett. 44, 261103 (2009)

    Article  ADS  Google Scholar 

  52. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Phys. Rev. B 32, 1043 (1985)

    Article  ADS  Google Scholar 

  53. J. Ma, Z. Chen, D. Chui, Z. Yuan, G. Yang, China Phys. Lett. 12, 102 (1995)

    Article  ADS  Google Scholar 

  54. X. Zhang, M. Ishikawa, H. Yaguchi, K. Onabe, Surf. Sci. 387, 371 (1997)

    Article  ADS  Google Scholar 

  55. G.S. Chen, D.H. Jaw, G.B. Stringfellow, J. Appl. Phys. 69, 4263 (1991)

    Article  ADS  Google Scholar 

  56. T. Tanaka, K. Takano, T. Tsuchiya, H. Sakaguchi, J. Cryst. Growth 221, 515 (2000)

    Article  ADS  Google Scholar 

  57. M. Asada, IEEE J. Quant. Electron. 25, 2019 (1989)

    Article  ADS  Google Scholar 

  58. M. Yamanishi, Y. Lee, IEEE J. Quant. Electron. 23, 367 (1987)

    Article  ADS  Google Scholar 

  59. W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals, Physics of the Gain Materials (Springer-Verlag, Berlin, Heidelberg, 1999), p. 50

  60. E.A. Avrutin, Conference on Lasers and Electro-Optics Europe, 2000. Conference Digest. 2000, Nice, 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Viljanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viljanen, J., Lehkonen, S. Homogeneous broadening and k-vector conservation in direct bandgap transitions. Eur. Phys. J. B 86, 221 (2013). https://doi.org/10.1140/epjb/e2013-30957-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30957-x

Keywords

Navigation