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Abstract. The effect of 1D periodic modulation on the transport and thermodynamic properties of a
non-interacting two-dimensional electron gas (2DEG) is investigated. The Hamiltonian used also includes
a tilted magnetic field, Rashba, and Dresselhauss spin-orbit interactions. The 1D periodic modulation
introduces non-quantized regions on Hall conductivity and a non-zero diffusive conductivity. A method
to estimate the modulation periodicity is given using the periodicity of Weiss oscillations on the diffusive
conductivity.

1 Introduction

The two dimensional electron gases (2DEGs) still attract
attention because the newly sophisticated growth tech-
niques that are responsible for the development of spin
controlled devices [1], and devices that use the 2DEG
like HEMT (High Electron Mobility Transistor). The first
ever 2D electron system with high mobility was the Si
MOSFET type transistor. 2DEG’s are most achieved in
type-1 heterojunctions, with high-mobility charge carriers
constrained by a non-symmetric (triangular) potential in
the third dimension [2] with HEMT as an example.

The asymmetry of the confining potential makes the
electrons to move in an effective electric field originating
the Rashba spin-orbit interaction (RSOI) [3,4]. On the
other hand, lack of bulk inversion symmetry is respon-
sible for a Dresselhauss spin-orbit interaction (DSOI) in
semiconductor materials of zincblende type structure [5].
The effect of both types of spin-orbit interactions are im-
portant in this system because, in addition to removing
the spin degeneracy, they are responsible for a spin de-
pendence on the physical characteristics of the system,
even in the absence of external magnetic field [6]. In pres-
ence of magnetic fields, both spin-orbit interactions can
introduce beating modulations on the physical proper-
ties. The spin-orbit interactions, however, are not the only
source of a beating pattern in the Shubnikov-de Haas and
on the Hass-van Alphen oscilations, in magnetoresistance
and magnetization, respectively. Another type of beating
pattern on the physical properties can be seen in the pres-
ence of a lateral, unidimensional modulation (1DM) called
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Weiss oscillations [7–9]. The Weiss oscillations of the con-
ductivity tensor σμν have a very characteristic period and
temperature dependence [10–13] resulting from the com-
mensurability between the cyclotron radius of the elec-
trons in the Fermi level and the period of the potential
modulation.

The periodic potential can be externally induced by
photoconductivity in heterostructures [7] or by inserting
a grid composed of parallel metal strips on the surface
inversion of 2DEG [14] combined with an external elec-
tric field. The development of devices with a 1D poten-
tial modulation (1DPM) [8,15] is important because new
effects can be induced by the external modulations, for
example, giant magnetoresistance [16].

Here, in this piece of work, we analyze the influence of
1DPM on the transport and thermodynamic properties of
a 2DEG with RSOI, DSOI and a tilted magnetic field on
a InAs heterojunction (m = 0.05me). The Hamiltonian
describing the system also has a Zeeman interaction due
to the possibility of reversible manipulation of electronic
states. It is worth mentioning that the system described
above has already been studied with an applied magnetic
field on the growth direction and the spin-orbit interac-
tions have been studied [8,15,17–25]. However, the mod-
ifications introduced in the Hamiltonian due to a tilted
magnetic field of moderate intensity, combined with both
spin orbit interactions of a 2DEG were not yet investigated
in a systematic way. In a previous work [26], this analy-
sis has been done considering the effects of RSOI com-
bined with a tilted magnetic field. The paper is organized
as follows: in Section 2, we start from the Hamiltonian
model to obtain the Schrödinger equation in a secular
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form. In Section 3, we show the resulting energy spec-
trum, density of states (DOS) and the Fermi energy. We
show results for the Hall conductivity σnd

xy in Section 4,
diffusive and collisional conductivities σd

yy. In Sections 5
and 6, we depict the results for the averaged magnetiza-
tion in the field direction. Our conclusions and general
comments are presented in Section 7.

2 The Hamiltonian

Using the same approach as in references [26,27], the cal-
culations are restricted to low density systems that can be
seen as a collection of non-interacting charged particles.
Besides, the dynamical behavior of the system is deter-
mined by a one-body Hamiltonian [28];

H = H0 +H1 (1)

where H is given by the Hamiltonian without the 1D
modulation

H0 =
1

2m
(P + eA)2 − e�

2m
σB

+
αr

�
(σxvy − σyvx) +

αd

�
(σxvx − σyvy) , (2)

where m is the electron effective mass of InAs (m =
0.05me). The first term is the kinetic energy, with the
vector potential given by A = −Bzyi−Bxzj. The second
term is the Zeeman interaction with B denoting the exter-
nal magnetic field and σ are the Pauli matrices. The third
term is the RSOI with intensity αr and the last term is
the DSOI with intensity αd. Here, we have the XY -plane
parallel to the confining region −δ/2 < z < δ/2. In all nu-
merical calculations, we use δ = 50 Å that is much smaller
than the lengths of the system in the x- and y-directions
(Lx and Ly, respectively).

The term H1 is given by the first-order Fourier expan-
sion term of a periodic unidimensional modulation. We
can introduce further generalizations and include the pos-
sibility of defects on the periodic modulation, for exam-
ple, an aperiodic unidimensional modulation following a
Fibonacci sequence. So, we write the unidimensional mod-
ulation as:

H1 = a�(y)V0[1 − cos(Ky)], (3)

where V0 and K are the strength of the unidimensional
modulation and the crystalline wavenumber, respectively.
The function a�(y) is given by:

a�(y) = q� for (�− 1)A < y < �A, (4)

where the � is the �th term of a Fibonacci sequence
(q1 = 1, q2 = 0, q3 = 1 and so on) and A is the lattice
parameter.

We consider H1 as a perturbation on the eigenenergies
and eigenvectors of H . We used V0 = 0.3 meV and K =
2π/A where the lattice parameter A is 3, 500 Å in the
numerical calculations. As in previous works [26,27], we

can find an effective Hamiltonian for a quasi-bidimensional
system written as:

Heff = �ωc cos θ
(
a†a+

1
2

)
+
mω2

cδ
2 sin2 θ

2

− i
1√
2
αr

lc

(
σ+a− σ−a†

)− 1√
2
αd

lc

(
σ+a

† + σ−a
)

− 1
2

�ωc

[
1
2

sin θ (σ+ + σ−) + cos θσz

]
, (5)

where σ± are ladder operators, θ is the angle between the
magnetic field B makes with the z-direction, and a is the
usual annihilation operator defined by:

a =
1√
2lc

(
y +

iPy

mωc cos θ

)
, (6)

and ωc =
(√

B2
x +B2

z

)
e/m is the cyclotron frequency,

and the magnetic length is:

lc =
√

�

mωc cos θ
. (7)

In the limit where θ = 0, and αr = αd = 0, the eigen-
states |ν, σ, kx〉 = eikxx√

Lx
|ν,±〉 associated to the eigenvalues

�ωc

(
ν + 1

2

) ∓ 1
2�ωc are easily obtained. We use them to

write the n-esimal eigenstate of Heff as:

∣∣∣ψ(n)(kx)
〉

=
∞∑

ν=0

C(n)
ν,σ |ν, σ, kx〉 , (8)

and the Schrödinger equation will be given by:
⎛
⎜⎜⎜⎜⎝

h1,1 − E h1,2 0 h1,4 . . .
h2,1 h2,2 − E h2,3 0 . . .
0 h3,2 h3,3 − E h3,4 . . .
h4,1 0 h4,3 h4,4 − E . . .

...
...

...
...

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

C1,+

C1,−
C2,+

C2,−
...

⎞
⎟⎟⎟⎟⎠=0,

(9)
where the matrix elements are:

hν,ν =

⎧⎨
⎩

�ωc cos θ
(

ν+1
2

)
+ mω2

cδ2 sin2 θ
2 ν odd,

�ωc cos θ
(

ν
2 − 1

)
+ mω2

cδ2 sin2 θ
2 ν even,

hν,ν+1 = (hν+1,ν)∗ =

{− 1
2�ωc sin θ ν odd,

−iαr

lc

√
ν/2 ν even,

hν,ν+3 = hν+3,ν =

{
−αd

lc

√
(ν + 1)/2 ν odd,

0 ν even.
(10)

The standard numerical methods are used to find the sys-
tem eigenvalues in the next section. With this, it is pos-
sible to investigate the influence of each interaction. As
seen above, the dependence of the elements of the sec-
ondary and quaternary diagonals on the direction of the
external magnetic field (n odd) and on αr (n even) shows
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that a tilted magnetic field and/or the RSOI/DSOI mix
both the orbital and the spin states.

Next, using a first-order perturbation theory the per-
turbed eigenvectors and eigenenergies can be calculated
using:

En = En +
〈
ψ(n)(kx)

∣∣∣H1

∣∣∣ψ(n)(kx)
〉
, (11)

where∣∣∣Ψ (n)(kx)
〉

=
∣∣∣ψ(n)(kx)

〉

+
∑
n′ �=n

〈
ψ(n)(kx) |H1|ψ(n)(kx)

〉
En − En′

∣∣∣ψ(n)(kx)
〉
.

(12)

The matrix elements can be calculated from the following
integral:

〈ψ(n)(kx)|H1|ψ(n′)(kx)〉 = δkx,kx′ δσ,σ′

×
∫ ∞

−∞
dy

∑
s′,s

(
C

(n)
s′,σ

)∗

× C(n)
s,σφs′(y − yc)φs(y − yc)

× a�(y)V0 [1 − cos(Ky)] . (13)

Here,

φs(y − yc) = e−(y−yc)
2/2l2c

Hs[(y − yc)/lc]√√
π2ss!lc

, (14)

where Hn is an Hermite polynomial, and

yc = kxl
2
c . (15)

In the periodic limiting case, the following integral can
be used to calculate the previous matrix elements of
equation (13):

〈ν′, σ′, k′x|H1 |ν, σ, kx〉 = V0δσ,σ′δkx,k′
x−K

× (
l2cK

2
)|ν−ν′|/2 �

(
i|ν−ν′|eiKyc

)
e−l2cK2/2

×

⎧⎪⎪⎨
⎪⎪⎩

(
ν!
ν′!

)1/2
Lν′−ν

ν (l2cK
2/2) for ν ≤ ν′,

(
ν′!
ν!

)1/2

Lν−ν′
ν′ (l2cK

2/2) for ν ≥ ν′,
(16)

where Lk
n(x) is an associated Laguerre polynomial. If we

neglect the level transitions due to the factorials on de-
nominators, we can express the matrix elements by:

〈ν′, σ′, k′x|H1 |ν, σ, kx〉 ≈ δν,ν′δσ,σ′δkx,k′
x−K

× V0

[
1 − e−l2cK2/2 cos (Kyc)Ln(l2cK

2/2)
]
. (17)

3 Density of states and fermi energy

To evaluate the eigenvalues and eigenvectors of equa-
tion (9), we have to diagonalize numerically a matrix

0 20 40 60 80
θ [degrees]

0

1

2

3

E
/h

ω
c

Fig. 1. The lowest energy levels En for the unperturbed sys-
tem (straight lines) and energy bands for the system in the
presence of a periodic modulation (brown regions) plotted
against the tilting angle θ, where αr = 1.4 × 10−11 eV m,
αd = 1.4 × 10−11 eV m and B = 1 T.

where we take only the n first lines and n first columns,
where n is chosen to ensure the convergence of the thermo-
dynamic and transport properties. After that, we calculate
the perturbed energies. Note that the perturbed energies
can be expressed in terms of κy = Kyc, which is the effect
of the periodic modulation. In this way, the mixed Landau
levels turn into energy bands, as can be seen from Figure 1.
By looking at the yc dependence on kx on equation (15),
one can conclude that the main effect of a unidimensional
modulation is to lift the px degeneracy present on the un-
perturbed system [27].

After the calculation of the energy bands, we can ob-
tain the density of states and Fermi energy. In order to
take into account the presence of doping impurities in the
crystalline semiconductor, we may write the density of
states per unit area as [29,30]

D(E) =
S0

4πl2c

∫ 2π

0

∑
n

e(E−En(κy))2/2Γ 2
dκy. (18)

The behavior of D(E) (in units of �ω cos θ) is shown in
Figure 2 for each one of the spin-orbit interactions where
we considered θ = 30◦. We can see the superposition be-
tween the levels for Γ = 0.5 and both spin orbit interac-
tions are the source of a beating pattern.

From the results one can see three regions where the
energy bands behave differently because of the spin-orbit
interactions. The same three gap regions for the unper-
turbed system [27] are found (the dashed lines in Figure 2
define the regions) between levels: for lower energies the
energy bands are approximately equal to an even inte-
ger multiple of �ω cos θ; for intermediate values of energy
the bands are equally spaced and equal to a half-integer
multiple of �ω cos θ; and for higher values of energy the
bands are approximately equal to an odd integer multiple
of �ω cos θ. The density of states have maxima and minima
in odd or even multiples of �ω cos θ, and the “nodes” occur
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Fig. 2. (a) The energy of the lowest bands against κy = �Kpyc

for αR = 1.4×10−11 eV m and αD = 0. (b) Energy in �ωc units
versus density of states for αR = 1.4×10−11 eV m and αD = 0.
(c) The same of (a) for αR = 0 and αD = 1.4 × 10−11 eV m.
(d) The same of (b) for αR = 0 and αD = 1.4 × 10−11 eV m.
In all plots we have θ = 30◦ and B = 1 T.

on a parity transition of the maxima. In addition, the odd
and even maximum in the regions of D(E) are inverted,
suggesting that the beating patterns of both interactions
can cancel each other, even in the presence of a tilted
magnetic field.

The beating pattern found on transport properties is
a result of unequally spaced energy levels. The superpo-
sition between bands is controlled by the parameter Γ
and arises from the extended states [31]. The extended
states are a consequence of scattering effects by the sys-
tem impurities [29,30]. In this way, we can state that the
Shubnikov-de Haas oscilations of such systems are the re-
sult of scattering effects.

Thus, the Shubnikov-de Haas oscillations are not af-
fected by the presence of a 1D periodic modulation, which
controls diffusive effects. So, the beating pattern of coli-
sional conductivity can be used to estimate the ratio be-
tween the strength of the spin-orbit interactions and the

effects of the modulation can be seen on the diffusive con-
tribution of conductivity tensor.

Once the density of states and the carrier density is
known the Fermi energy can be written as [15,26,32]

4hns

eB cos θ
=

∫ 2π

0

∑
n

[
1 + erf

(
EF − En(κy)√

2Γ

)]
dκy,

(19)
where the number of electrons per level per unit area at
the Fermi level is given in terms of the level degeneracy
by Ns = ns/gd [26]. This ratio defines a filling factor. We
can write the filling factor in terms of the magnetic field
modulus and tilting angle as:

Ns =
hns

eB cos θ
. (20)

All the physical quantities depend essentially on the prop-
erties of the electrons at the Fermi level. This dependence
enables us to state that the maxima and minima of physi-
cal properties are quantized in terms of the structure fac-
tor Ns, even in presence of the modulation.

We show in Figure 3 the Fermi energy versus B and
versus θ for lower Γ (lower impurity concentration) and
higher Γ (higher impurity concentration). We can see that
the for low impurity concentrations the Fermi energy is
continuous inside allowed bands. For higher impurity con-
centrations the Fermi energy are allowed to vary in gaps as
an effect of extended states, which allows electrons to have
energies in the prohibited regions [31] and facilitating the
jumps to higher energy states. That effect increases the
collisional conductivities.

4 Hall conductivity

The Hall conductivity obtained from the non-diagonal
Boltzmann equation [31,33,34], in the limit where T → 0,
is given by:

σxy =
ie2�gd

LxLy

∑
n′,n

u (En − EF ) − u (En′ − EF )

(En − En′)2

×
〈
Ψ (n′)

∣∣∣Vx

∣∣∣Ψ (n)
〉〈

Ψ (n)
∣∣∣Vy

∣∣∣Ψ (n′)
〉
,

where u(E) is a step function, and the velocity operator
components are Vη = ∂H

∂Pη
where η = x, y, z.

Even in the presence of modulation, we can see the
half integer plateaus introduced by both spin-orbit inter-
actions, from Figure 4 [15,26,27]. The same result can be
seen in quantum wires in presence of spin-orbit interac-
tions, in case of RSOI only [35]. It is clear that the Hall
conductivity plateaus are related with the gaps of the en-
ergy spectra and Fermi energy of the system. When the
Fermi energy crosses a gap, we have a plateau of Hall con-
ductivity, as can be seen from Figure 4.
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Fig. 3. (a) Fermi energy EF for Γ = 0.005 meV (straight line)
and Γ = 0.5 meV (dashed line) and energy bands versus B
(gray regions). In all plots: θ = 30◦, αR = αD = 10−11 eV/m
and ns = 1011 electrons/m2 . (b) Fermi energy EF for Γ =
0, 005 meV (straight line) and Γ = 0.5 meV (dashed line) and
energy bands versus θ (gray regions). In all plots: B = 1 T,
αR = αD = 10−11 eV/m and ns = 1011 electrons/m2.

5 Collisional conductivity

The diagonal contribution to the conductivity σd
yy is given

by the sum between the collisional conductivity σcol
yy and

the diffusive conductivity σdif
yy [31,33,34]. For the system

studied here, the contribution to the collisional conduc-
tivity σcol

yy is:

σcol
yy =

βe2

h

1
2
√
πl2c

∫ 2π

0

dκy

∑
n

∫ ∞

∞
d�e−[�−En(κy)]2/Γ 2

× F (�) [1 − F (�)]
∑

s,σ,σ′

[(
C(n)

s,σ

)∗ (
C

(n)
s,σ′

)
(2s+ 1)

+
(
C(n)

s,σ

)∗ (
C

(n)
s+1,σ′

)
(2s)

]
. (21)

Here, F (E) is the usual Fermi-Dirac distribution, wη,ζ is
the transition ratio between the levels in the case of elastic

8.9
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E
F
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m
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]
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σ xy
 [

e2 / h
]
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θ [degrees]

4

6

8

10

12
σ xy

 [
e2 / h

]

(a)

(b)

Fig. 4. (a) Fermi energy EF (straight line) and energy bands
(gray regions) versus B on top and Hall conductivity σxy versus
B on bottom. In all plots, we have θ = 30◦, αR = αD =
10−11 eV/m, ns = 2 × 1011 cm−2, Γ = 0, 5 meV and T = 0.
(b) Fermi energy EF (straight line) and energy bands versus θ
(grey regions) on top and Hall conductivity σxy versus θ. In
all plots, we have B = 1 T, αR = αD = 10−11 eV/m, ns =
2 × 1011 cm−2, Γ = 0, 5 meV and T = 0. The dotted lines are
guides to the eye.

scattering by impurities of density Ni, expressed by:

wn,n′ =
2πλ2Ni

�

∑
q

|U(q)|2
∣∣∣〈ψ(n)

∣∣∣ eiq·r
∣∣∣ψ(n′)

〉∣∣∣2

× δ(En − En′)δkx,k′
x−qx , (22)

where

U(q) =
e2

2εoε
1

(q2 + k2
s)1/2

(23)

is the Fourier transform of the scattering potential

U(r) =
e2

4πεoε
e−ksr

r
. (24)
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Fig. 5. Collisional conductivity σyy at T = 0 as function of
the structure factor Ns(B). We have (a) αr = 10−11 eV m,
αd = 0, θ = 0 and (b) θ = 30◦, αr = 1 × 10−11 eV m,
(c) αd = 5 × 10−12 eV m, θ = 0 and (d) θ = 30◦. One period of
the odd/even phases is highlighted on the figures. The dotted
and dashed vertical lines are on even values of Ns, serving as
guides to the eye.

In the limit where T → 0, equation (21) becomes

σyy =
e2

h

1
2
√
πl2c

∫ 2π

0

dκy

∑
n

e−[EF −En(κy)]2/Γ 2

×
∑

s,σ,σ′

[(
C(n)

s,σ

)∗ (
C

(n)
s,σ′

)
(2s+ 1)

+
(
C(n)

s,σ

)∗ (
C

(n)
s+1,σ′

)
(2s)

]
. (25)

In Figures 5 and 6, we show results for the collisional
conductivity as function of the filling factor Ns(B) for
the unperturbed system and perturbed system by peri-
odic/aperiodic modulations. All the curves are coincident
which permit us to conclude that the beating pattern does
not depend on the modulation. This is expected because
the collisional conductivity is the result of scattering ef-
fects. The effect of 1D modulations is to introduce a dif-
fusive contribution to the conductivity tensor.

We see that the beating pattern is present in both fig-
ures. This beating is a consequence of the modified number
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B
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N

s
(B)

1.5
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(b)

Fig. 6. Collisional conductivity σyy at T = 0 as function of the
structure factor Ns(B). We have αr = αd = 1 × 10−11 eV m,
(a) θ = 0 and (b) θ = 45◦.

of the Landau levels per unit of energy introduced by the
spin-orbit interactions. The figures also show a quanti-
zation of maxima/minima for integer values of Ns as in
the unperturbed system. The parity transition of Ns(B)
onEF maxima/minima determines the same parity transi-
tions on Shubnikov-de Haas oscillations on collisional con-
ductivity, suggesting that the collisional conductivity de-
pends only on the behavior of the electrons in the Fermi
level [27].

In the case αR = αD, shown on Figure 6, we do not
have the parity transitions on the maxima of collisional
conductivity and the effects of Rashba and Dresselhauss
spin-orbit interactions cancel each other.

We have, for low magnetic fields (�ωc cos θ � αM/lc),
a approximation for the Landau levels, given by [27]:

En,± = �ωc cos θ
(
n+

1
2

)
− 2α2

Mm

�2

±
√

�2ω2
c

4
sin2 θ +

16α2
Mα2

Δm
2

�4
, (26)

where αM = (αR + αD)/2 and αΔ = |αR − αD|/2. By
observing the above approximation, we see that the po-
larization of the Landau levels are unchanged in the low
magnetic field limit. Defining the spin splitting η = ΔE
as the level separation, we can see that the polarization
of the Fermi level can change by providing the following
relation to be satisfied:

B
√
N cos2 θ − 4 sin2 θ =

16αMαΔm
2

�3e
, (27)

where N is the minimal positive integer for N cos2 θ −
4 sin2 θ > 0 (the spin splitting can cover more than
one Landau level). That relation, combined with equa-
tion (20), gives the period of the even/odd phases. For
the chosen parameters we have:

– Np ≈ 36 for αr = 1 × 10−11 eV m, αd = 0 and θ = 0;
– Np ≈ 40 for αr = 1×10−11 eV m, αd = 0 and θ = 45◦;
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– Np ≈ 40 for αr = 1×10−11 eV m, αd = 5×10−12 eV/m
and θ = 0;

– Np ≈ 48 for αr = 1×10−11 eV m, αd = 5×10−12 eV m
and θ = 45◦,

and, for the results of Figure 5, we can see that the periods
for greater structure factors/low magnetic fields obtained
are Np = 32, 34, 34, 34, respectively. The periods for our
numerical results are in agreement with theoretical pre-
dictions within an error of 20%.

By inverting the relations, we can express the ratio
r = αr/αd in the period of odd/even phases as:

r = 1 − 1
2αox

, (28)

with

x =
4m2Np

ns�
4
√
N − 4 tan2 θ

, (29)

where N is the minimal positive integer for
N − 4 tan2 θ > 0 and αo = 10−30 eV m is a unit of
spin-orbit strength.

6 Diffusive conductivity

The diffusive contribution of conductivity tensor, in the
presence of 1D modulations is not zero and can be
given by [15,32]:

σdif
xx =

e2mγ

2
√

2π3/2�Γ

×
∑

n

∫ 2π

0

dκye
−(EF −En(κy))2/2Γ 2

(
∂En

∂κy

)2

(30)

and the T → 0 limit of diffusive conductivity σdif
xx for

periodic modulations can be given by:

σdif
xx =

e2mγVpl
2
cK

2

2
√

2π3/2�Γ

∑
n

∑
s,σ

∣∣∣C(n)
s,σ

∣∣∣2 Ln(l2cK
2/2)

×
∫ 2π

0

dκye
−(EF −En(κy))2/2Γ 2

sin (κy) . (31)

The diffusive conductivity is the signature of 1D modula-
tions. In the case of 1D modulations constructed by paral-
lel metallic strips arranged in a periodic way, close to the
confining region of 2DEG, the 1D periodic modulation can
be easily controlled by an external electric field, so the dif-
fusive contribution can be determined experimentally by
measuring the σxx and σyy modulations in the presence
and absence of an electric field. Subtracting one from the
other, we have the diffusive contribution which is the ef-
fect of 1D modulations only. With the diffusive contribu-
tion we can determine the periodicity of the structure and
if there is vacancy defects by analyzing the Weiss oscil-
lations. The numerical results are shown considering the
periodic case and the presence of vacancy effects by using
a Fibonacci sequence as a generator of the 1D modulation
as described previously.
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di
f [e

2 / h
]

60 80 100 120 140 160 180
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0
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σ yy

di
f [e

2 / h
]
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2 / h
]
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σ yy
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2 / h
]

(a)

(c)

(d)

(b)

Fig. 7. Diffusive conductivity σdif
yy at T = 0 as function of

the structure factor Ns(B). We have (a) αr = 10−11 eV m,
αd = 0, θ = 0 and (b) θ = 30◦, αr = 1 × 10−11 eV m,
(c) αd = 7 × 10−12 eV m, θ = 0 and (d) θ = 30◦. The dot-
ted and dashed vertical lines serving as guides to the eye.

In Figure 7, we show the results for the diffusive con-
tribution σdif

xx against the filling factor Ns(B) for the
periodic modulation (brown) and aperiodic modulations
(black). We can see the Weiss oscillations (oscillations
on the enveloping curve) and Shubnikov-de Haas oscil-
lations (internal oscillations). The minima/maxima of
Shubnikov-de Haas oscillations are on integer values of
filling factor and we see the same parity transition of col-
lisional conductivity.

It is worth mentioning that the 1D modulation satis-
fies the Landau regime defined when the lattice parameter
(potential width) is higher than the radius of electronic
semiclassical orbits. In this way, inside two consecutive
minima of the 1D periodic modulation we can have many
comprised electronic orbitals. This is different from the
Onsager limit, typically treated by tight-binding mod-
els where we have the opposite situation: the width of
the periodic modulation is almost zero, which works as
a lattice site orbital and the electron local density are
expressed by occupation numbers. By this fundamental
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difference we do not expect Anderson localization phe-
nomena here.

Using the fact that the potential can comprise many
electronic semiclassical orbitals between two minima, we
can conclude that the Weiss oscillations are the result
from commensuration between the cyclotron radius of the
electronic semiclassical orbitals in the Fermi level and
the lattice parameter of the periodic confining modula-
tion, i.e. 2Rc = 2

√
2πnsl

2
c , where Rc is the cyclotron ra-

dius. For lower filling factors (higher magnetic fields) the
Shubnikov-de Haas oscillations are predominant and for
higher filling factors the Weiss oscillations are dominant.
From the commensuration condition, if an integer multi-
ple of 2Rc is equal to the lattice parameter Ap, an inte-
ger number of orbits is comprised inside to consecutive
minima of periodic modulation. In this case, the diffusive
conductivity vanishes. For the chosen parameters we have

ΔNs(B) =
πApns√

2πns
≈ 43.9 (32)

and from the Figure 7, we see, for the periodic case (grey
curves), we have ΔNs ≈ 42 between two roots of diffusive
conductivity. By inverting the relation we can estimate
the lattice parameter Ap.

For the aperiodic case, where we considered periodic
approximants to the aperiodic modulation, namely a pe-
riod with N = 55 and N = 89 lattice parameters, we have
that the diffusive contribution has no more roots, which
can be explained by the fact that the aperiodic vacancy
defects destroy the commensurability condition between
the lattice parameter and the cyclotron radius seen in the
periodic case. So, we conclude that the absence of roots
in the diffusive conductivity is a signature of vacancy de-
fects on the periodic metallic stripes that generate the 1D
modulation. In this case, we can infer the minimal lat-
tice parameter by analyzing ΔNs(B) between two local
minima of diffusive conductivity.

7 Conclusions and general remarks

We obtained the free electron spectra of a 2DEG with
RSOI, DSOI and 1D modulation in the presence of a tilted
magnetic field. The results show that we can identify the
presence of spin-orbit interactions and a 1D modulation
by using the transport properties. We can estimate the
ratio of both RSOI and DSOI interactions by a mea-
sure of collisional conductivity and analyzing the beat-
ing patterns of the Shubnikov-de Haas oscillations. Our
results show that, while the symmetry breaking due to
RSOI and DSOI exists for all values of the field’s inten-
sity, the energy spectrum has little or no correction for
fields that have the intensity of its z-component higher
than m2αr/�

3e and m2αd/�
3e. The odd-even transitions

on Shubnikov-de Haas oscillations on collisional conduc-
tivity are determined by the same transitions on EF .

When the spin-orbit interactions have the same
strength, there is no parity transition of filling factors

on maxima/minima of collisional conductivity. The tilt-
ing field, in this case can change all maxima in odd in-
tegers to even integers. This is explained by noting that
the beating pattern is a signature of the Aharonov-Casher
effect [36], the electric counterpart of the Aharonov-Bohm
effect [37]. The Rashba and Dresselhauss effects introduce
extra phase factors into the electron wavefunction and we
can picture that effect as a “rotation” in the counterclock-
wise direction for the RSOI and in a clockwise direction
for DSOI as the charge carrier crosses the 2DEG. The two
effects are the same, but one can cancel the other.

The phase control by the SOI interactions can be seen
even in the absence of an external magnetic field. The
modulations in the physical properties can be interpreted
as the result of Aharonov-Casher phase acquired between
carriers traveling clockwise and counterclockwise. That
phase difference produces interference effects in the spin-
sensitive electron transport. By tuning the strength of the
SOI interactions as changing an external electric field, that
phase difference could be changed and the conductance
could be externally modulated.

The collisional conductivity is almost insensible to the
presence of modulations but the diffusive contribution of
conductivity tensor enables us to identify the presence of
modulations and even identify the presence of vacancy de-
fects on the periodically-arranged metallic stripes used to
generate a periodic 1D modulation. By a commensura-
tion condition, if a integer multiple of 2Rc is equal to the
lattice parameter Ap, an integer number of orbits are com-
prised between to consecutive minima of periodic modu-
lation which enables us to estimate the lattice parameter
by measuring the ΔNs(B) between two roots of diffusive
conductivity.

In the aperiodic case, the diffusive contribution has no
roots, which can be explained by the fact that the aperi-
odic 1D modulation destroys the commensurability condi-
tion between the lattice parameter and the cyclotron ra-
dius seen in the periodic case. Indeed, the absence of roots
in the diffusive conductivity is a signature of vacancy de-
fects in the periodic metallic stripes that generate the 1D
modulation. In this case, we can infer the minimal lat-
tice parameter by analyzing ΔNs(B) between two local
minima of diffusive conductivity.
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